[1] |
OSTROWSKI S R, WILBUR S, CHOU C H S J, et al. Agency for Toxic Substances and Disease Registry's 1997 priority list of hazardous substances. Latent effects—carcinogenesis, neurotoxicology, and developmental deficits in humans and animals[J]. Toxicology and Industrial Health, 1999, 15(7): 602-644.
|
[2] |
郭莉, 赵燕鹏, 杜冬云. 三氯化铁除砷和镉的机理[J]. 化工学报, 2014, 65(10): 4118-4122. GUO L, ZHAO Y P, DU D Y. Mechanism of removing arsenic and cadmium with ferric chloride[J]. CIESC Journal, 2014, 65(10): 4118-4122.
|
[3] |
ALLOWAY B J, AYRES D C. Chemical Principles of Environmental Pollution[M]. Boca Raton : CRC Press, 1997: 216-218.
|
[4] |
MANDAL B K, SUZUKI K T. Arsenic round the world: a review[J]. Talanta, 2002, 58(1): 201-235.
|
[5] |
MONTENEGRO V, SANO H, FUJISAWA T. Recirculation of high arsenic content copper smelting dust to smelting and converting processes[J]. Miner. Eng., 2013, 49: 184-189.
|
[6] |
GUO X, SHI J, YI Y, et al. Separation and recovery of arsenic from arsenic-bearing dust[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 2236-2242.
|
[7] |
TONGAMP W, TAKASAKI Y, SHIBAYAMA A. Selective leaching of arsenic from enargite in NaHS-NaOH media[J]. Hydrometallurgy, 2010, 101(1): 64-68.
|
[8] |
LI Y, LIU Z, LI Q, et al. Alkaline oxidative pressure leaching of arsenic and antimony bearing dusts[J]. Hydrometallurgy, 2016, 166: 41-47.
|
[9] |
LEWIS A E. Review of metal sulphide precipitation[J]. Hydrometallurgy, 2010, 104(2): 222-234.
|
[10] |
吴玉林, 徐志峰, 郝士涛. 炼铜烟灰碱浸脱砷的热力学及动力学[J]. 有色金属 (冶炼部分), 2013, 4: 3-7. WU Y L, XUE Z F, HAO S T. Thermodynamics and kinetics of alkaline leaching of arsenic in copper smelting dust[J]. Nonferrous metal (Extractive Metallurgurgy), 2013, 4: 3-7.
|
[11] |
GUO X, YU Y I, JING S H I, et al. Leaching behavior of metals from high-arsenic dust by NaOH-Na2S alkaline leaching[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(2): 575-580.
|
[12] |
PANDIYARAJ K N, SELVARAJAN V, DESHMUKH R R, et al. Modification of surface properties of polypropylene (PP) film using DC glow discharge air plasma[J]. Applied Surface Science, 2009, 255(7): 3965-3971.
|
[13] |
SATOH K, SATO S, WAGATSUMA K. Formation mechanism of toxic-element-free oxide layer on Ti-6Al-4V alloy in D.C. glow discharge plasma with pure oxygen gas[J]. Surface and Coatings Technology, 2016, 302: 82-87.
|
[14] |
李娜, 孙竹梅, 阮福辉, 等. 三氯化铁除砷(Ⅲ)机理[J]. 化工学报, 2012, 63(7): 2224-2228. LI N, SUN Z M, YUAN F H, et al. Mechanism of removing arsenic(Ⅲ) with ferric chloride[J]. CIESC Journal, 2012, 63(7): 2224-2228.
|
[15] |
关小红, 李修华, 姜利, 等. 氧化-混凝法去除水中As(Ⅲ)的研究进展[J]. 环境科学与技术, 2009, 32(8):88-92. GUAN X H, LI X H, JIANG L, et al. Review on As(Ⅲ) removal by oxidation and subsequent coagulation[J]. Environmental Science Technology, 2009, 32(8): 88-92.
|
[16] |
SHAO B, GUAN Y, TIAN Z, et al. Advantages of aeration in arsenic removal and arsenite oxidation by structural Fe(Ⅱ) hydroxides in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506: 703-710.
|
[17] |
赵卓英, 齐越, 杜冬云. 微波和等离子体辅助次氯酸钠浸出含砷铜矿脱砷工艺[J]. 有色金属 (冶炼部分), 2015, 7: 3. ZHAO Z Y, QI Y, DU D Y. Arsenic removal from arsenic-bearing copper ore by sodium hypochlorite leaching assisted with microwave and low-pressure glow discharge plasma[J].Nonferrous metal (Extractive metallurgurgy), 2015, 7: 3.
|
[18] |
NAM S, NAMKOONG W. Irradiation effect on leaching behavior and form of heavy metals in fly ash of municipal solid waste incinerator[J]. Journal of Hazardous Materials, 2012, 199: 440-447.
|
[19] |
GAO J, HU Z, WANG X, et al. Oxidative degradation of acridine orange induced by plasma with contact glow discharge electrolysis[J]. Thin Solid Films, 2001, 390(1): 154-158.
|
[20] |
KIKUCHI Y, OGURA M, OTSUBO A, et al. Characteristics of sub-atmospheric pressure glow discharge plasmas for preparation of a-C:H films[J]. Vacuum, 2016, 23(2): 1-7.
|
[21] |
KHATAEE A, GHOLAMI P, VAHID B. Heterogeneous sono-Fenton-like process using nanostructured pyrite prepared by Ar glow discharge plasma for treatment of a textile dye[J]. Ultrasonics Sonochemistry, 2016, 29: 213-225.
|
[22] |
Chinese Environment Protect ion Bureau. Analysis in Water and Wastewater[M]. 4th ed. Beijing: Environment Science in China Press, 2001: 246-248, 133-136, 210-213.
|
[23] |
国家环保总局.水质65种元素的测定电感耦合等离子体质谱法: HJ700-2014[M]. 北京: 中国环境出版社, 2014. Chinese Environment Protect ion Bureau. Water Quality- Determination of 65 Elements-Inductively Coupled Plasma-mass Spectrometry[M]. Beijing: China Environmental Science Press, 2014.
|
[24] |
李如忠, 徐晶晶, 姜艳敏, 等. 铜陵市惠溪河滨岸带土壤重金属形态分布及风险评估[J]. 环境科学研究, 2013, 26(1): 88-96. LI R Z, XU J J, JIANG Y M, et al. Fraction distribution and ecological risk assessment of soil heavy metals in the riparian zone of Huixi steam in Tongling city[J]. Research of Environment Sciences, 2013, 26(1): 88-96.
|
[25] |
LINNIK S A, GAYDAYCHUK A V. Processes and parameters of diamond films deposition in AC glow discharge[J]. Diamond and Related Materials, 2013, 32: 43-47.
|
[26] |
LI L H, FU R K Y, POON R W Y, et al. Evaporation-glow discharge hybrid source for plasma immersion ion implantation[J]. Surface and Coatings Technology, 2004, 186(1): 165-169.
|
[27] |
MARTINSON C A, REDDY K J. Adsorption of arsenic(Ⅲ) and arsenic(Ⅴ) by cupric oxide nanoparticles[J]. Journal of Colloid and Interface Science, 2009, 336(2): 406-411.
|
[28] |
PADILLA R, VEGA D, RUIZ M C. Pressure leaching of sulfidized chalcopyrite in sulfuric acid-oxygen media[J]. Hydrometallurgy, 2007, 86(1/2): 80-88.
|
[29] |
ZOU J J, LIU C J, ELIASSON B. Modification of starch by glow discharge plasma[J]. Carbohydrate Polymers, 2004, 55(1): 23-26.
|
[30] |
MAY F, GOCK E, VOGT V, et al. Plasma-modification of sulfides for optimizing froth-flotation properties[J]. Minerals Engineering, 2012, 35(6): 67-74.
|
[31] |
OCI?SKI D, JACUKOWICZ-SOBALA I, MAZUR P, et al. Water treatment residuals containing iron and manganese oxides for arsenic removal from water-characterization of physicochemical properties and adsorption studies[J]. Chemical Engineering Journal, 2016, 294: 210-221.
|
[32] |
MIN L L, YUAN Z H, ZHONG L B, et al. Preparation of chitosan based electrospun nanofiber membrane and its adsorptive removal of arsenate from aqueous solution[J]. Chemical Engineering Journal, 2015, 267: 132-141.
|