CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 525-532.DOI: 10.11949/j.issn.0438-1157.20181068
• Process system engineering • Previous Articles Next Articles
Xinyuan LIANG(),Lei ZHANG(),Linlin LIU,Jian DU
Received:
2018-09-25
Revised:
2018-10-22
Online:
2019-02-05
Published:
2019-02-05
Contact:
Lei ZHANG
通讯作者:
张磊
作者简介:
<named-content content-type="corresp-name">梁馨元</named-content>(1993—),女,硕士研究生,<email>709435183@qq.com</email>|张磊(1986—),男,博士,副教授,<email>keleiz@dlut.edu.cn</email>
基金资助:
CLC Number:
Xinyuan LIANG, Lei ZHANG, Linlin LIU, Jian DU. Study on rubber polymer using computer-aided molecular design method based on molecular dynamics[J]. CIESC Journal, 2019, 70(2): 525-532.
梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181068
Property constraints | Lower limit | Upper limit | ||
---|---|---|---|---|
CED/MPa Tg/K thermal conductivity/(W·m-1·K-1) density/(kg·m-3) | — — 0.11 0.7 | 330 235 — 1.4 | ||
Repeat unit structures | CED /MPa | Tg/K | Thermal conductivity/(W·m-1·K-1) | Density/(kg·m-3) |
-[-CH2-]n- -[-(CH2)6-CH -[-(CH2)5-CH -[-(CH2)4-CH -[-(CH2)6-CH -[-(CH2)5-CH -[-(CH2)6-CH … -[-(CH2)-CH … | 264.82 309.32 316.79 327.27 285.57 288.73 281.54 … 308.81 … | 168.34 173.77 174.44 175.29 182.79 184.90 188.78 … 197.79 … | 0.1250 0.1645 0.1717 0.1820 0.1234 0.1231 0.1281 … 0.1210 … | 0.8328 1.093 1.137 1.198 0.8640 0.8688 0.8734 … 0.8990 … |
Table 1 Results of repeat unit structures
Property constraints | Lower limit | Upper limit | ||
---|---|---|---|---|
CED/MPa Tg/K thermal conductivity/(W·m-1·K-1) density/(kg·m-3) | — — 0.11 0.7 | 330 235 — 1.4 | ||
Repeat unit structures | CED /MPa | Tg/K | Thermal conductivity/(W·m-1·K-1) | Density/(kg·m-3) |
-[-CH2-]n- -[-(CH2)6-CH -[-(CH2)5-CH -[-(CH2)4-CH -[-(CH2)6-CH -[-(CH2)5-CH -[-(CH2)6-CH … -[-(CH2)-CH … | 264.82 309.32 316.79 327.27 285.57 288.73 281.54 … 308.81 … | 168.34 173.77 174.44 175.29 182.79 184.90 188.78 … 197.79 … | 0.1250 0.1645 0.1717 0.1820 0.1234 0.1231 0.1281 … 0.1210 … | 0.8328 1.093 1.137 1.198 0.8640 0.8688 0.8734 … 0.8990 … |
Stage | Ensemble | Pressure/ MPa | Temperature/ K | Time step/fs | Number of steps | Run time/ps |
---|---|---|---|---|---|---|
1 2 3 4 5 6 | NVT NPT NPT NPT NPT NPT | — 0.1 0.1 0.1 0.1 0.1 | 300 300—600 600 600—100 100—300 300 | 1 1 1 1 1 1 | 300000 200000 600000 250000 300000 500000 | 300 200 600 250 500 500 |
Table 2 Relaxation process
Stage | Ensemble | Pressure/ MPa | Temperature/ K | Time step/fs | Number of steps | Run time/ps |
---|---|---|---|---|---|---|
1 2 3 4 5 6 | NVT NPT NPT NPT NPT NPT | — 0.1 0.1 0.1 0.1 0.1 | 300 300—600 600 600—100 100—300 300 | 1 1 1 1 1 1 | 300000 200000 600000 250000 300000 500000 | 300 200 600 250 500 500 |
A | ——系统在垂直于传导方向的横截面积 |
---|---|
ai(t) | ——原子i在t时刻的加速度 |
Ci, Dj, Ek | ——分别为第一、二、三级基团贡献值 |
Fi(t) | ——原子i在t时刻所受的力 |
J | ——热通量, W·m-2 |
Ni, Mj, Ok | ——分别为第一、二、三级基团分别出现的次数 |
ni | ——第i种基团在重复单元中出现次数 |
nj | ——第j种基团在重复单元中出现次数 |
P(ni) | ——聚合物性质预测值 |
Pl | ——性质约束下限 |
Pu | ——性质约束上限 |
dT/dx | ——温度梯度, K·m-1 |
vi(t) | ——原子i在t时刻的速度矢量 |
vj | ——j基团的化合价 |
κ | ——热导率, W·m-1·K-1 |
A | ——系统在垂直于传导方向的横截面积 |
---|---|
ai(t) | ——原子i在t时刻的加速度 |
Ci, Dj, Ek | ——分别为第一、二、三级基团贡献值 |
Fi(t) | ——原子i在t时刻所受的力 |
J | ——热通量, W·m-2 |
Ni, Mj, Ok | ——分别为第一、二、三级基团分别出现的次数 |
ni | ——第i种基团在重复单元中出现次数 |
nj | ——第j种基团在重复单元中出现次数 |
P(ni) | ——聚合物性质预测值 |
Pl | ——性质约束下限 |
Pu | ——性质约束上限 |
dT/dx | ——温度梯度, K·m-1 |
vi(t) | ——原子i在t时刻的速度矢量 |
vj | ——j基团的化合价 |
κ | ——热导率, W·m-1·K-1 |
1 | FungK Y, NgK M, ZhangL, et al. A grand model for chemical product design[J]. Computers & Chemical Engineering, 2016, 91: 15-27. |
2 | 钱宇, 潘吉铮, 江燕斌, 等. 化学产品工程的理论和技术[J]. 化工进展, 2003, 22(3): 217-223. |
QianY, PanJ Z, JiangY B, et al. The theory and technology of chemical product engineering[J]. Chemical Industry and Engineering Progress, 2003, 22(3): 217-223. | |
3 | GaniR, NgK M. Product design — molecules, devices, functional products, and formulated products[J]. Computers & Chemical Engineering, 2015, 81: 70-79. |
4 | HarperP M, GaniR. A multi-step and multi-level approach for computer aided molecular design[J]. Computers & Chemical Engineering, 2000, 24(2): 677-683. |
5 | GaniR, NielsenB, FredenslundA. A group contribution approach to computer-aided molecular design[J]. AIChE Journal, 1991, 37(9): 1318-1332. |
6 | JobackK G, ReidR C. Estimation of pure-component properties from group-contributions[J]. Chemical Engineering Communications, 1987, 57(1-6): 233-243. |
7 | LymanW J, ReehlW F, RosenblattD H. Handbook of Chemical Property Estimation Methods[M]. Washington DC: American Chemical Society, 1990: 250. |
8 | ConteE, GaniR, NgK M. Design of formulated products: a systematic methodology[J]. AIChE Journal, 2011, 57: 2431-2449. |
9 | ConteE, GaniR, ChengY S, et al. Design of formulated products: experimental component[J]. AIChE Journal, 2012, 58: 173-189. |
10 | MatteiM, KontogeorgisG M, GaniR. A comprehensive framework for surfactant selection and design for emulsion based chemical product design[J]. Fluid Phase Equilib., 2014, 362: 288-299. |
11 | MartínM, MartínezA. A methodology for simultaneous process and product design in the formulated consumer products industry: the case study of the detergent business[J]. Chem. Eng. Res. Des., 2013, 91(5): 795-809. |
12 | BernardoF P, SaraivaP M. A conceptual model for chemical product design[J]. AIChE Journal, 2015, 61: 802-815. |
13 | LiuQ, ZhangL, LiuL, et al. GC-COSMO based reaction solvent design with new kinetic model using CAMD[J]. Computer Aided Chemical Engineering, 2018, 44: 235-240. |
14 | ZhangL, CignittiS, GaniR. Generic mathematical programming formulation and solution for computer-aided molecular design[J]. Computers & Chemical Engineering, 2015, 78:79-84. |
15 | ZhangL, BabiD K, GaniR. New vistas in chemical product and process design[J]. Annu. Rev. Chem. Biomol. Eng., 2016, 7 (1): 557-582. |
16 | YunusN A, GernaeyK V, WoodleyJ M, et al. A systematic methodology for design of tailor-made blended products[J]. Computers & Chemical Engineering, 2014, 66(10): 201-213. |
17 | ChongF K, EljackF T, AtilhanM, et al. Ionic liquid design for enhanced carbon dioxide capture — a computer aided molecular design approach[J]. Chem. Eng. Trans., 2014, 39: 253-258. |
18 | KarunanithiA T, MehrkeshA. Computer-aided design of tailor-made ionic liquids[J]. AIChE Journal, 2013, 59(12): 4627-4640. |
19 | CharpentierJ C. The necessary multiscale and multidisciplinary approach for product-process innovation[C]//DTU-KT Seminar 2007 Lyngby. Denmark, 2017. |
20 | VaidyanathanR, El-HalwagiM M. Computer-aided synthesis of polymers and blends with target properties[J]. Industrial & Engineering Chemistry Research, 1996, 35(2): 627-634. |
21 | CamardaK V, MaranasC D. Optimization in polymer design using connectivity indices[J]. Industrial & Engineering Chemistry Research, 1999, 38(5): 1884-1892. |
22 | SatyanarayanaK C, AbildskovJ, GaniR. Computer-aided polymer design using group contribution plus property models[J]. Computers & Chemical Engineering, 2009, 33(5): 1004-1013. |
23 | SatyanarayanaK C, AbildskovJ, GaniR, et al. Computer aided polymer design using multi-scale modelling[J]. Brazilian Journal of Chemical Engineering, 2010, 27(3): 369-380. |
24 | MarreroJ, GaniR. Group-contribution based estimation of pure component properties[J]. Fluid Phase Equilibria, 2001, 183, (1): 183-208. |
25 | SaatyT L. Decision making with analytic hierarchy process[J]. International Journal of Services Sciences, 2008, 1(1): 83-98. |
26 | ChuriN, AchenieL E. Novel mathematical programming model for computer aided molecular design[J]. Ind. Eng. Chem. Res., 1996, 35(10): 3788-94. |
27 | 马群锋. 晶态非极性聚合物内聚能密度的估算[J]. 高分子通报, 2011, 7: 103-106. |
MaQ F. Estimation of cohesive energy density of crystalline nonpolar polymer[J]. Chinese Polymer Bulletin, 2011, 7: 103-106. | |
28 | AshbyM F. On the engineering properties of materials[J]. Acta Metallurgica, 1989, 37(5): 1273. |
29 | MarkJ E. Polymer Data Handbook[M]. Oxford: Oxford University Press, 1999. |
30 | JundP, JullienR. Molecular-dynamics calculation of the thermal conductivity of vitreous silica[J]. Physical Review B, 1999, 59:137. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[3] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[4] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[5] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[9] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[10] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[11] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[12] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[13] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[14] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[15] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||