[1] |
LEMONS R A. Fuel cells for transportation[J]. Journal of Power Sources, 1990, 29(2):251-264.
|
[2] |
STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861):345-352.
|
[3] |
YEN T H, HONG W T, TSAI Y C, et al. Experimental investigation of 1 kW solid oxide fuel cell system with a natural gas reformer and an exhaust gas burner[J]. Journal of Power Sources, 2010, 195(5):1454-1462.
|
[4] |
李永峰, 董新法, 林维明. 固体氧化物燃料电池的现状和未来[J]. 电源技术, 2002, 26(6):462-465. DOI:10.3969/j.issn. 1002-087X. 2002.06.018. LI Y F, DONG X F, LIN W M. State-of-art and future of solid oxide fuel cell[J]. Chinese Journal of Power Sources, 2002, 26(6):462-465. DOI:10.3969/j.issn.1002-087X.2002.06.018.
|
[5] |
RAMASWAMY R C, RAMACHANDRAN P A, DUDUKOVI? M P. Coupling exothermic and endothermic reactions in adiabatic reactors[J]. Chemical Engineering Science, 2008, 63(6):1654-1667.
|
[6] |
WANG F, ZHOU J, WANG G Q. Transport characteristic study of methane steam reforming coupling methane catalytic combustion for hydrogen production[J]. International Journal of Hydrogen Energy, 2012, 37(17):13013-13021.
|
[7] |
LEE C B, LEE S W, LEE D W, et al. Hydrogen production from methane steam reforming in combustion heat assisted novel micro-channel reactor with catalytic stacking[J]. Industrial and Engineering Chemistry Research, 2013, 52(39):14049-14054.
|
[8] |
RYI S K, PARK J S, CHO S H, et al. Novel micro fuel processor for PEMFCs with heat generation by catalytic combustion[J]. Chemical Engineering Journal, 2005, 113(1):47-53.
|
[9] |
漆波, 李隆键, 彭川, 等. 平板微反应器中甲烷蒸气重整与甲烷催化燃烧的耦合分析[J]. 化学反应工程与工艺, 2008, 24(3):272-276. DOI:10.3969/j.issn.1001-7631.2008.03.015. QI B, LI L J, PENG C, et al. Numerical analysis of coupling of methane catalytic combustion and steam reforming in a plate micro-reactor[J]. Chemical Reaction Engineering and Technology, 2008, 24(3), 272-276. DOI:10.3969/j.issn.1001-7631.2008.03.015.
|
[10] |
梅红. 金属基整体式催化剂与反应器的传递及反应特性[D]. 北京:北京化工大学, 2007. MEI H. Transfer and reactive performances of metallic based monolithic catalysts and reactors[D]. Beijing:Beijing University of Chemical Technology, 2007.
|
[11] |
彭昂. kW级燃料电池热电联产系统中天然气重整制氢体系的研究[D]. 广州:华南理工大学, 2011. PENG A. Hydrogen production from nature gas for fuel cell based micro-CHP system[D]. Guangzhou:South China University of Technology, 2011.
|
[12] |
PATEL K S, SUNOL A K. Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor[J]. International Journal of Hydrogen Energy, 2007, 32(13):2344-2358.
|
[13] |
RYI S K, PARK J S, SONG H C, et al. Fast start-up of micro-channel fuel processor integrated with an igniter for hydrogen combustion[J]. Journal of Power Sources, 2006, 161(2):1234-1240.
|
[14] |
YU S, HONG D, LEE Y, et al. Development of a catalytic combustor for a stationary fuel cell power generation system[J]. Renewable Energy, 2010, 35(5):1083-1090.
|
[15] |
VENKATARAMAN K, WANAT E C, SCHMIDT L D. Steam reforming of methane and water-gas shift in catalytic wall reactors[J]. AIChE Journal, 2003, 49(5):1277-1284.
|
[16] |
ROBBINS F A, ZHU H Y, JACKSON G S. Transient modeling of combined catalytic combustion/CH4 steam reforming[J]. Catalysis Today, 2003, 83(1):141-156.
|
[17] |
ZANFIR M, GAVRIILIDIS A. Influence of flow arrangement in catalytic plate reactors for methane steam reforming[J]. Chemical Engineering Research and Design, 2004, 82(2):252-258.
|
[18] |
KOLIOS G, GLOCKLER B, GRITSCH A, et al. Heat-integrated reactor concepts for hydrogen production by methane steam reforming[J]. Fuel Cells, 2005, 5(1):52-65.
|
[19] |
KANG S, LEE K, YU S, et al. Development of a coupled reactor with a catalytic combustor and steam reformer for a 5 kW solid oxide fuel cell system[J]. Applied Energy, 2014, 114:114-123.
|
[20] |
CHANG T G, LEE S M, AHN K Y, et al. An experimental study on the reaction characteristics of a coupled reactor with a catalytic combustor and a steam reformer for SOFC systems[J]. International Journal of Hydrogen Energy, 2012, 37(4):3234-3241.
|