CIESC Journal ›› 2016, Vol. 67 ›› Issue (4): 1601-1609.DOI: 10.11949/j.issn.0438-1157.20151308
Previous Articles Next Articles
SHAO Gaosong
Received:
2015-08-17
Revised:
2015-10-27
Online:
2016-04-05
Published:
2016-04-05
Supported by:
supported by the Natural Science Foundation of Hebei Province (B2014507016).
邵高耸
通讯作者:
邵高耸
基金资助:
河北省自然科学基金项目(B2014507016)。
CLC Number:
SHAO Gaosong. Preparation and catalytic activity of hierarchical interlinked structure of cabbage-leaf-like cerium phosphate materials[J]. CIESC Journal, 2016, 67(4): 1601-1609.
邵高耸. 分级结构卷心菜叶形磷酸铈材料的制备及性能[J]. 化工学报, 2016, 67(4): 1601-1609.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20151308
[1] | RAJESH K, SIVAKUMAR B, PILLAR P K, et al. Synthesis of nanocrystalline lanthanum phosphate for low temperature densification to monzite cetamics[J]. Materials Letters, 2004, 58 (11): 1687-1791. |
[2] | LI Q, YAM V W W. Redox luminescence switch based on energy transfer in CePO4: Tb3+ nanowires[J]. Angew. Chem. Int. Ed., 2007, 46 (19): 3486-3489. |
[3] | ZHU L, LIU X M, LIU X D, et al. Facile sonochemical synthesis of CePO4: Tb/LaPO4 core/shell nanorods with highly improved photoluminescent properties[J]. Nanotechnology, 2006, 17 (16): 4217-4222. |
[4] | DEZFULI A S, GANJALI M R, NOROUZI P. Facile sonochemical synthesis and morphology control of CePO4 nanostructures via an oriented attachment mechanism: application as luminescent probe for selective sensing of Pb2+ ion in aqueous solution[J]. Materials Science and Engineering C, 2014, 42: 774-781. |
[5] | YANG Z, JI C. Interface mechanism of a rapid and mild aqueous-organic method to prepare CePO4 nanostructures[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, 444: 246-251. |
[6] | RAMÍREZ D P, DOMÍNGUEZ-CRESPO, TORRES-HUERTA A M, et al. Microwave-assisted hydrothermal synthesis of CePO4 nanostructures: correlation between the structural and optical properties[J]. Journal of Alloys and Compounds, 2015, 643: s209-s218. |
[7] | BAO J R, ZHU X W, LIU Y, et al. N,N-Dimethylformamide-induced synthesis and photoluminescence of CePO4 and Ce0.95PO4:Tb0.05 with sphere-like nanostructures[J]. Materials Letters, 2014,124: 97-100. |
[8] | CAO M, HU C, WU Q, et al. Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires[J]. Nanotechnology, 2005, 16 (2): 282-286. |
[9] | FANG Y P, XU A W, SONG R Q, et al. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires[J]. J. Am. Chem. Soc., 2003, 125 (51): 16025-16034. |
[10] | ZHANG Y W, YAN Z G, YOU L P, et al. General synthesis and characterization of monocrystalline lanthanide orthophosphate nanowires[J]. Eur. J. Inorg. Chem., 2003, 2003 (22): 4099-4104. |
[11] | BU W B, HUA Z L, CHEN H R, et al. Hydrothermal synthesis of ultraviolet-emitting cerium phosphate single-crystal nanowires[J]. Chem. Lett., 2004, 33 (5): 612-613. |
[12] | ZHANG Y J, GUAN H M. Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires[J]. J. Cryst. Growth, 2003, 256 (1/2): 156-161. |
[13] | YAN Z G, ZHANG Y W, YOU L P, et al. General synthesis and characterization of monocrystalline 1D-nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate[J]. J. Cryst. Growth, 2004, 262 (1/2/3/4): 408-414. |
[14] | YAN Z G, ZHANG Y W, YOU L P, et al. Controlled synthesis and characterization of monazite type monocrystalline nanowires of mixed lanthanide orthophosphates[J]. Solid State Commun., 2004, 130 (1/2): 125-129. |
[15] | TANG C C, BANDO Y, GOLBERG D, et al. Cerium phosphate nanotubes: synthesis, valence state and optical properties[J]. Angew Chem. Int. Ed., 2005, 117 (4): 582-585. |
[16] | XING Y, LI M, DAVIS S A, et al. Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media[J]. J. Phys. Chem. B, 2006, 110 (3): 1111-1113. |
[17] | LI B, SHEN L Y, LIU X Z, et al. Structure and morphology transition of CePO4 coating on alumina fibers[J]. Journal of materials Science Letters, 2000, 19 (4): 343-347. |
[18] | 邵高耸. 一种简单方法制备具有项链结构的介孔磷酸铈材料[J], 化工新型材料, 2013, 41 (11): 31-33. SHAO G S. A simple preparating route of necklace-like cerium phosphate mesoporous materials[J]. New Chemical Materials, 2013, 41 (11): 31-33. |
[19] | RAJESH K, MUKUNDAN P, PILLAR P K, et al. High-surface-area nanocrystalline cerium phosphate through aqueous sol-gel route[J]. Chem. Mater., 2004, 16 (14): 2700-2705. |
[20] | FANG Y P, XU A W, DONG W F. Highly improved green photoluminescence from CePO4: Tb/LaPO4 core/shell nanowires[J]. Small, 2005, 1 (10): 967-971. |
[21] | YAN R X, SUN X M, WANG X, et al. Crystal structures, anisotropic growth, and optical properties: controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials[J]. Chem. Eur. J., 2005, 11 (7): 2183-2195. |
[22] | KITAMURA N, AMEZAWA K, YAMAMOTO N, et al. Electrical conduction properties of Sr-doped LaPO4 and CePO4 under oxidizing and reducing conditions[J]. J. Electrochem. Soc., 2004, 152 (4): A658-A663. |
[23] | ZHAO X F, TENG Y C, YANG H, et al. Comparison of microstructure and chemical durability of Ce0.9Gd0.1PO4 ceramics prepared by hot-press and pressureless sintering[J]. Ceramics International, 2015, 41: 11062-11068. |
[24] | YE C, GUO H, ZHANG M H, et al. Synthesis and enhanced electrochemical property of Au-doped cerium phosphate nanowires[J]. Materials Letters, 2014, 131: 141-144. |
[25] | TAKITA Y, SANO K, MURAYA T, et al. Oxidative dehydrogenation of iso-butane to iso-butene (Ⅱ): Rare earth phosphate catalysts[J]. Appl. Catal. A: General, 1998, 170 (1): 23-31. |
[26] | TAKITA Y, NINOMIYA M, MIYAKE H, et al. Catalytic decomposition of perfluorocarbons (Ⅱ): Decomposition of CF4 over AlPO4-rare earth phosphate catalysts[J]. Phys. Chem. Chem. Phys., 1999, 1: 4501-4504. |
[27] | ONODA H, NARIAI H, AI M, et al. Formation and catalytic characterization of various rare earth phosphates[J]. J. Mater. Chem., 2002, 12: 1754-1760. |
[28] | KLOCHKOV V. Comparative analysis of photocatalytic activity of aqueous colloidal solutions of ReVO4:Eu3+ (Re La, Gd, Y), CePO4:Tb, CeO2 and C60[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 310: 128-133. |
[29] | KANG J, BYUN S, NAM S, et al. Synergistic improvement of oxygen reduction reaction on gold/cerium-phosphate catalysts[J]. International Journal of Hydrogen Energy, 2014, 39: 10921-10926. |
[30] | 田春良. 介孔磷酸铈催化剂的合成、表征及丙烷氧化脱氢探究[J]. 材料导报, 2008, 22 (suppl.): 441-442, 451. TIAN C L. Synthesis and characterization of mesoporous cerium phosphate and study of oxidative dehydrogenation of propane[J]. Materials Review, 2008, 22 (suppl.): 441-442,451. |
[31] | LEMONIDOU A A, NALBANDIAN L, VASALOS I. Oxidative dehydrogenation of propane over vanadium oxide based catalysts: effect of support and alkali promoter[J]. Catalysis Today, 2000, 61: 333-341. |
[32] | WAI H L, ZHOU X Q, WENG W Z, et al. Catalytic performance, structure, surface properties and active oxygen species of the fluoride-containing rare earth(alkaline earth)-based catalysts for oxidative coupling of methane and oxidative dehydrogenation of light alkanes[J]. Catalysis Today, 1999, 51: 161-175. |
[33] | CADUS L E, GOMEZ M F, ABELLO M C. Synergy effects in the oxidative dehydrogenation of propane over Mg-MoO4-MoO3 catalysts[J]. Catal. Lett., 1997, 43: 229-233. |
[34] | SHAHBAZI KOOTENAEI A H, TOWFIGHI J, KHODADADI A, et al. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane[J], Applied Surface Science, 2014, 298: 26-35. |
[35] | WU G J, HEI F, ZHANG N, et al. Oxidative dehydrogenation of propane with nitrous oxide over Fe-ZSM-5 prepared by grafting: characterization and performance[J]. Applied Catalysis A: General, 2013, 468: 230-239. |
[36] | FAN X Q, LI J M, ZHAO Z, et al. Synthesis of a new ordered mesoporous NiMoO4 complex oxide and its efficient catalytic performance for oxidative dehydrogenation of propane[J]. Journal of Energy Chemistry, 2014, 23 (2): 171-178. |
[37] | 杨儒, 李毓姝, 钟旭峰, 等. CePO4纳米线的热稳定性及光学性能[J]. 高等学校化学学报, 2009, 30 (3): 450-455. YANG R, LI Y S, ZHONG X F, et al. Thermal stability and optical performance of CePO4 nanowires[J]. Chem. J. Chinese Universities, 2009, 30 (3): 450-455. |
[38] | CHO K S, TALAPIN D V, GASCHLER W, et al. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles[J]. J. Am. Chem. Soc., 2005, 127: 7140-7147. |
[39] | COLEMAN A W, NICOLIS I, KELLER N, et al. Aggregation of cyclodextrins: an explanation of the abnormal solubility of b-cyclodextrin[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1992, 13: 139-143. |
[40] | JUN Y W, CHOI J S, CHEON J W. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes[J]. Angew. Chem. Ed., 2006, 45: 3414-3439. |
[41] | KRUK M, JARONIEC M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chem. Mater., 2001, 13 (10): 3169-3183. |
[42] | 魏强. 二维相关红外光谱在淀粉分析中的应用[D]. 广州: 华南理工大学, 2010. WEI Q. Application of two-dimensional infrared correlation spectroscopy in starch analysis[D]. Guangzhou: South China Unversity of Technology, 2010. |
[43] | 朱春山, 张强, 宋佳. 改性b-环糊精微球的制备与表征[J]. 高分子材料科学与工程, 2011, 27 (3): 150-153. ZHU C S, ZHANG Q, SONG J. Preparation and characterization of modified b-cyclodextrin microspheres[J]. Polymer Materials Science and Engineering, 2011, 27 (3): 150-153. |
[44] | 顾海欣, 施文健, 吴薇, 等. 壳聚糖交联b-环糊精对水中铬酸盐的吸附研究[J]. 环境科学学报, 2014, 34 (9): 2233-2239. GU H X, SHI W J, WU W, et al. Research on the adsorption of chromate on CTS-CD in aqueous solution[J]. Acta Science Circumstantiae , 2014, 34 (9): 2233-2239. |
[45] | MA T Y, ZHANG X J, SHAO G S, et al. Ordered macroporous titanium phosphonate materials: synthesis, photocatalytic activity, and heavy metal ion adsorption[J]. J. Phys. Chem. C, 2008, 112: 3090-3096. |
[46] | MASUI T, TATEGAKI H, FURUKAWA S, et al. Synthesis and characterization of new environmentally-friendly pigments based on cerium phosphate[J]. Journal of the Ceramic Society of Japan, 2004, 112: 646-651. |
[47] | JAIMEZ E, HIX G B, SLADE R C T. A phosphate-phosphonate of titanium (Ⅳ) prepared from phosphonomethyliminodiacetic acid: characterization, n-alkylamine intercalation and proton conductivity[J]. Solid State Ionics, 1997, 97: 195-201. |
[48] | TAKITA Y, QING X, TAKAMI A, et al. Oxidative dehydrogenation of isobutane to isobutene (Ⅲ): Reaction mechanism over CePO4 catalyst[J]. Applied Catalysis A: General, 2005, 296: 63-69. |
[49] | SPLINTER S J, ROFAGHA R, MCINTYRE N S, et al. XPS characterization of the corrosion film formed on nanocrystalline Ni-P alloys in sulphuric acid[J]. Surf. Interface Anal., 1996, 24: 181-186. |
[50] | GLORIEUX B, BERJOAN R, MATECKI M, et al. X-Ray photoelectron spectroscopy analyses of lanthanides phosphates[J]. Applied Surface Science, 2007, 253: 3349-3359. |
[51] | RAO M V R, SHRIPATHI T. Photoelectron spectroscopic study of X-ray induced reduction of CeO2[J]. J. Electron. Spectrosc. Relat. Phenom., 1997, 87: 121-126. |
[52] | 徐爱菊, 照日格图, 林勤, 等. 焦钒酸镍的X射线光电子能谱及其氧化脱氢催化性能研究[J]. 功能材料, 2007, 38 (9): 1489-1491. XU A J, BAO Z R G T, LIN Q, et al. The study of X-ray photoelectron spectroscopy and catalytic performance in ODH of pyro-Ni2V2O7 catalysts[J]. Functional Material, 2007, 38 (9): 1489-1491. |
[53] | ZHANG Q H, WANG Y, OHISHI Y, et al. Vanadium-containing MCM-41 for partial oxidation of lower alkanes[J]. J. Catal., 2001, 202: 308-318. |
[54] | 李勇, 申文杰. 金属氧化物纳米催化的形貌效应[J]. 中国科学: 化学, 2012, 42: 376-389. LI Y, SHEN W J. Morphology-dependent nanocatalysis on metal oxides[J]. Scientia Sinica: Chimica, 2012, 42: 376-389. |
[55] | ZHOU K B, LI Y D. Catalysis based on nanocrystals with well-defined facets[J]. Angew. Chem. Int. Ed., 2012, 51: 602-613 |
[56] | GELLINGS P J, BOUWMEESTER H J M. Solid state aspects of oxidation catalysis[J]. Catal. Today, 2000, 58: 1-53. |
[57] | BALDI M, FINOCCHIO E, PISTARINO C, et al. Evaluation of the mechanism of the oxy-dehydrogenation of propane over manganese oxide[J]. Appl. Catal. A: Gen., 1998, 173: 61-74. |
[58] | 郭建平. VOx/SBA-15催化剂上提高丙烷氧化脱氢反应选择性的研究[D]. 厦门: 厦门大学, 2008. GUO J P. Studies on the improvement of selectivity of VOx/SBA-15 catalysts for the oxidative dehydrogenation of propane to propene[D]. Xiamen: Xiamen University, 2008. |
[59] | CREASER D C, HUDGINS R R, SILVESTON P L, et al. Kinetic modeling of oxygen dependence in oxidative dehydrogenation of propane[J]. Canadian Journal of Chemical Engineering, 2000, 78: 182-193.Letters, 2004, 58(11): 1687-1791. |
[2] | Li Q, Yam V W W, Redox luminescence switch based on energy transfer in CePO4: Tb3+ nanowires[J]. Angew. Chem. Int. Ed., 2007, 46(19): 3486-3489. |
[3] | Zhu L, Liu X M, Liu X D, Li Q, Li J Y, Zhang S Y, Cao X Q, Facile sonochemical synthesis of CePO4: Tb/LaPO4 core/shell nanorods with highly improved photoluminescent properties[J]. Nanotechnology, 2006, 17(16): 4217-4222. |
[4] | Amin Shiralizadeh D, Mohammad Reza G, Parviz N, Facile sonochemical synthesis and morphology control of CePO4 nanostructures via an oriented attachment mechanism: Application as luminescent probe for selective sensing of Pb2+ ion in aqueous solution, Materials Science and Engineering C, 2014, 42, 774-781. |
[5] | Yang Z, Ji C, Interface mechanism of a rapid and mild aqueous-organic method to prepare CePO4 nanostructures, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, 444, 246-251. |
[6] | Palma-Ramírez D, Domínguez-Crespo M A, Torres-Huerta A M, Dorantes-Rosales H, Ramírez-Meneses E, Rodríguez E, Microwave-assisted hydrothermal synthesis of CePO4 nanostructures:Correlation between the structural and optical properties, Journal of Alloys and Compounds, 2015, 643, s209-s218. |
[7] | Jinrong B, Xiaowei Z, Ying L, Wenxian L, Ranbo Y, N,N-dimethylformamide-induced synthesis and photoluminescence of CePO4 and Ce0.95PO4:Tb0.05 with sphere-like nanostructures, Materials Letters, 2014,124,97-100. |
[8] | Cao M, Hu C, Wu Q, Guo C, Qi Y, Wang E, Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires[J]. Nanotechnology, 2005, 16(2): 282-286. |
[9] | Fang Y P, Xu A W, Song R Q, Zhang H X, You L P, Yu J, Liu H Q, Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires[J]. J Am. Chem. Soc., 2003, 125(51): 16025-16034. |
[10] | Zhang Y W, Yan Z G, You L P, Si R, Yan C H, General synthesis and characterization of monocrystalline lanthanide orthophosphate nanowires[J]. Eur. J. Inorg. Chem., 2003, 2003(22): 4099-4104. |
[11] | Bu W B, Hua Z L, Chen H R, Zhang L X, Shi J L, Hydrothermal synthesis of ultraviolet-emitting cerium phosphate single-crystal nanowires[J]. Chem. Lett., 2004, 33(5): 612-613. |
[12] | Zhang Y J, Guan H M, Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires[J]. J. Cryst. Growth., 2003, 256(1-2): 156-161. |
[13] | Yan Z G, Zhang Y W, You L P, Si R, Yan C H, General synthesis and characterization of monocrystalline 1D-nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate[J]. J. Cryst. Growth., 2004, 262(1-4): 408-414. |
[14] | Yan Z G, Zhang Y W, You L P, Si R, Yan C H, Controlled synthesis and characterization of monazite type monocrystalline nanowires of mixed lanthanide orthophosphates[J]. Solid State Commun., 2004, 130(1-2): 125-129. |
[15] | Tang C C, Bando Y, Golberg D, Ma R Z, Cerium phosphate nanotubes: synthesis, valence state and optical properties[J]. Angew Chem. Int. Ed., 2005, 117(4): 582-585. |
[16] | Xing Y, Li M, Davis S A, Mann S, Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media[J]. J. Phys. Chem. B, 2006, 110(3): 1111-1113. |
[17] | Li B, Shen L Y, Liu X Z, Wang T M, Structure and morphology transition of CePO4 coating on alumina fibers[J]. Journal of materials Science Letters, 2000, 19(4): 343-347. |
[18] | Shao Gaosong(邵高耸), A simple preparating route of necklace-like cerium phosphate mesoporous materials[J]. New Chemical Materials(化工新型材料), 2013, 41(11), 31-33. |
[19] | Rajesh K, Mukundan P, Pillai P K, Nair V R, Warrier K G K, High-surface-area nanocrystalline cerium phosphate through aqueous sol-gel route[J]. Chem. Mater., 2004, 16(14): 2700-2705. |
[20] | Fang Y P, Xu A W, Dong W F, Highly improved green photoluminescence from CePO4: Tb/LaPO4 core/shell nanowires[J]. Small, 2005, 1(10): 967-971. |
[21] | Yan R X, Sun X M, Wang X, Peng Q, Li Y D, Crystal structures, Anisotropic growth, and optical properties: controlled synthesis of lanthanide orthophosphate one-demensional nanomaterials[J]. Chem. Eur. J., 2005, 11(7): 2183-2195. |
[22] | Kitamura N, Amezawa K, Yamamoto N, Omata T, Otsuka-Yao-Matsuo Y, Electrical conduction properties of Sr-doped LaPO4 and CePO4 under oxidizing and reducing conditions[J]. J. Electrochem. Soc., 2004, 152(4): A658-A663. |
[23] | Xiaofeng Z, Yuancheng T, HangY, Yi H, Jiyan M, Comparison of microstructure and chemical durability of Ce0.9Gd0.1PO4 ceramics prepared by hot-press and pressureless sintering, Ceramics International, 2015, 41, 11062-11068. |
[24] | Cui Y, Huan G, Menghuan Z, Hongguo Z, Jianqiang H, Xuandi L, Aiqing L, Synthesis and enhanced electrochemical property of Au-doped cerium phosphate nanowires, Materials Letters, 2014, 131, 141-144. |
[25] | Takita Y, Sano K, Muraya T, Nishiguchi H, Kawata N, Ito M, Akbay T, Ishihara T, Oxidative dehydrogenation of iso-butane to iso-butene II. Rare earth phosphate catalysts[J]. Appl. Catal. A: General, 1998, 170(1): 23-31. |
[26] | Takita Y, Ninomiya M, Miyake H, Wakamatsu H, Yoshinaga Y, Ishihara T, Catalytic decomposition of perfluorocarbons Part II. Decomposition of CF4 over AlPO4-rare earth phosphate catalysts. Phys. Chem. Chem. Phys., 1999, 1, 4501-4504. |
[27] | Onoda H, Nariai H, Moriwaki A, Maki H, Mottoka I, Formation and catalytic characterization of various rare earth phosphates, J. Mater. Chem., 2002, 12, 1754-1760. |
[28] | Vladimir K, Comparative analysis of photocatalytic activity of aqueous colloidal solutions of ReVO4:Eu3+(Re = La, Gd, Y), CePO4:Tb, CeO2 and C60, Journal of Photochemistry and Photobiology A: Chemistry, 2015, 310, 128-133. |
[29] | Joonhyeon K, Sujin B, Seunghoon N, Suji K, Taeho M, Byungwoo P, Synergistic improvement of oxygen reduction reaction on gold/cerium-phosphate catalysts, International Journal of Hydrogen Energy, 2014, 39, 10921-10926. |
[30] | Tian Chunliang(田春良), Synthesis and characterization of mesoporous cerium phosphate and study of oxidative dehydrogenation of propane[J]. Materials Review(材料导报), 2008, 22(suppl.), 441-442,451. |
[31] | Lemonidou A A, Nalbandian L, Vasalos I A, Oxidative dehydrogenation of propane over vanadium oxide based catalysts: Effect of support and alkali promoter[J]. Catalysis Today, 2000,61: 333-341. |
[32] | H L Wai, X Q Zhou, W Z Weng, Q L Rui, S C Zi, W D Zhang, M S Chen, J Z Luo, S Q Zhou, Catalytic performance,structure, surface properties and active oxygen species of the fluoride-containing rare earth(alkaline earth)-based catalysts for oxidative coupling of methane and oxidative dehydrogenation of light alkanes[J]. Catalysis Today, 1999,51, 161-175. |
[33] | Cadus L E, Gomez M F, Abello M C, Synergy effects in the oxidative dehydrogenation of propane over Mg-MoO4-MoO3 catalyts[J], Catal. Lett., 1997, 43, 229-233. |
[34] | Shahbazi Kootenaei A H, Towfighia J, Khodadadi A, Mortazavi Y, Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane[J], Applied Surface Science, 2014, 298, 26-35. |
[35] | Wu G J, Hei F, Zhang N, Guan N J, Li L D, Grünert W G, Oxidative dehydrogenation of propane with nitrous oxide overFe-ZSM-5 prepared by grafting: Characterization and performance[J], Applied Catalysis A: General, 2013, 468, 230-239. |
[36] | Fan X Q, Li J M, Zhao Z, Wei Y C, Liu J, Duan A, Jiang G Y, Synthesis of a new ordered mesoporous NiMoO4 complex oxide and its efficient catalytic performance for oxidative dehydrogenation of propane[J], Journal of Energy Chemistry, 2014, 171-178. |
[37] | Yang Ru(杨儒), Li Yushu(李毓姝), Zhong Xufeng(钟旭峰), Li Min(李敏), Thermal stability and optical performance of CePO4 nanowires[J]. Chem. J Chinese Unicersities(高等学校化学学报), 2009, 30(3), 450-455. |
[38] | Cho K S, Talapin D V, Gaschler W, Murray C B, Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles[J]. J. Am. Chem. Soc., 2005, 127, 7140-7147. |
[39] | Anthony W, Coleman, Ioannis N, Aggregation of cyclodextrins: an explanation of the abnormal solubility of b-cyclodextrin[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1992, 13, 139-143. |
[40] | Jun Y W, Choi J S, Cheon J W, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes[J]. Angew. Chem. Ed., 2006, 45, 3414-3439. |
[41] | Kruk M, Jaroniec M, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chem. Mater., 2001, 13(10): 3169-3183. |
[42] | Wei Qiang(魏强), Application of two-dimensional infrared correlation spectroscopy in starch analysis[D] Guangzhou: South China Unversity of Technology, 2010. |
[43] | Zhu Chuanshan(朱春山), Zhang Qiang(张强), Song Jia(宋佳), Preparation and characterization of modified b-cyclodextrin microspheres[J]. Polymer Materials Science and Engineering(高分子材料科学与工程), 2011, 27(3), 150-153. |
[44] | Gu Haixin(顾海欣), Shi Wenjian(施文健), Wu Wei(吴薇), Wang Jingzhi(王精志), Yang Qinlin(杨琴淋), Research on the adsorption of chromate on CTS-CD in aqueous solution[J]. Acta Science Circumstantiae (环境科学学报), 2014, 34(9), 2233-2239. |
[45] | Ma T Y, Zhang X J, Shao G S, Cao J L, Yuan Z Y, Ordered macroporous titanium phosphonate materials: synthesis, photocatalytic activity, and heavy metal ion adsorption[J]. J. Phys. Chem. C, 2008, 112, 3090-3096. |
[46] | Masui T, Tategaki H, Furukawa S, Imanaka N, Synthesis and characterization of new environmentally-friendly pigments based on cerium phosphate[J]. Journal of the Ceramic Society of Japan, 2004, 112, 646-651. |
[47] | Jaimez E, Hix G B, Slade R C T, A phosphate-phosphonate of titanium (IV) prepared from phosphonomethyliminodiacetic acid: characterization, n-alkylamine intercalation and proton conductivity[J]. Solid State Ionics 1997, 97,195-201. |
[48] | Takita Y, Qing X, Takami A, Nishiguchi H, Nagaoka K, Oxidative dehydrogenation of isobutane to isobutene III: reaction mechanism over CePO4 catalyst[J]. Applied Catalysis A: General, 2005, 296, 63-69. |
[49] | Splinter S J, Rofagha R, Mcintyre N S, Erb U, XPS characterization of the corrosion film formed on nanocrystalline Ni-P alloys in sulphuric acid[J]. Surf. Interface Anal., 1996, 24, 181-186. |
[50] | Glorieux B, Berjoan R, Matecki M, Kammouni A, Perarnau D, X-ray photoelectron spectroscopy analyses of lanthanides phosphates[J]. Applied Surface Science, 2007, 253, 3349-3359. |
[51] | Rao M V R, Shripathi T, Photoelectron spectroscopic study of X-ray induced reduction of CeO2[J]. J Electron Spectrosc. Relat. Phenom., 1997, 87,121-126. |
[52] | Xu Aiju(徐爱菊), Bao Zhaorigetu(照日格图), Lin Qin(林勤), Liu Lianyun(刘莲云), The study of X-ray photoelectron spectroscopy and catalytic performance in ODH of pyro-Ni2V2O7 catalysts[J]. Functional Material(功能材料), 2007, 38(9), 1489-1491. |
[53] | Zhang Q H, Wang Y, Ohishi Y, Shishido T, Takehira K, Vanadium-containing MCM-41 for partial oxidation of lower alkanes[J]. J. Catal., 2001, 202, 308-318. |
[54] | Li Yong(李勇), Shen Wenjie(申文杰), Morphology-dependent nanocatalysis on metal oxides[J]. Scientia Sinica: Chimica(中国科学: 化学), 2012, 42, 376-389. |
[55] | Kebin Z, Yadong L, Catalysis based on nanocrystals with well-defined facets, Angew. Chem. Int. Ed., 2012, 51, 602-613 |
[56] | Gellings P J, Bouwmeester H J M, Solid state aspects of oxidation catalysis[J]. Catal. Today, 2000, 58, 1-53. |
[57] | Baldi M, Finocchio E, Pistarino C, Busca G, Evaluation of the mechanism of the oxy-dehydrogenation of propane over manganese oxide[J]. Appl. Catal. A: Gen., 1998, 173, 61-74. |
[58] | Guo Jianping(郭建平), Studies on the improvement of selectivity of VOx/SBA-15 catalysts for the oxidative dehydrogenation of propane to propene[D], Fujian: Xiamen University, 2008. |
[59] | Creaser D C, Andersson B, Hudgins R R, Silveston P L, Kinetic modeling of oxygen dependence in oxidative dehydrogenation of propane[J]. Canadian Journal of Chemical Engineering, 2000, 78, 182-193. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[5] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[6] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[7] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[8] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[9] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[10] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[11] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[12] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[13] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[14] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[15] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||