CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5039-5046.DOI: 10.11949/0438-1157.20221102
• Process system engineering • Previous Articles Next Articles
Xinye HUANG1,2(), Ye ZHANG1, Shuyuan ZHANG1,2, Zhen CHEN1, Tong QIU1,2()
Received:
2022-08-01
Revised:
2022-09-01
Online:
2022-12-06
Published:
2022-11-05
Contact:
Tong QIU
黄新烨1,2(), 张冶1, 张书源1,2, 陈振1, 邱彤1,2()
通讯作者:
邱彤
作者简介:
黄新烨(1998—),男,硕士研究生,huangxy20@mails.tsinghua.edu.cn
基金资助:
CLC Number:
Xinye HUANG, Ye ZHANG, Shuyuan ZHANG, Zhen CHEN, Tong QIU. Application of Bayesian optimization method in the production of 1,3-propanediol by Vibrio natriegens[J]. CIESC Journal, 2022, 73(11): 5039-5046.
黄新烨, 张冶, 张书源, 陈振, 邱彤. 贝叶斯优化方法在需钠弧菌生产1,3-丙二醇中的应用[J]. 化工学报, 2022, 73(11): 5039-5046.
Add to citation manager EndNote|Ris|BibTeX
No. | 核苷酸序列(5'→3') | 相对强度 |
---|---|---|
1 | CTTATGGCTAGCTCAGTCCTAGGGACAGTGCTAGC | 0.024 |
2 | TTTACGGCTAGCTCAGTCCTAGGGATAGTGCTAGC | 0.045 |
3 | CTGACGGCTAGCTCAGTCCTAGGGATAGTGCTAGC | 0.065 |
4 | TTGATGGCTAGCTCAGTCCTAGGGATTATGCTAGC | 0.078 |
5 | TTGATGGCTAGCTCAGTCCTAGGTACAGTGCTAGC | 0.116 |
6 | TTGATGGCTAGCTCAGTCCTAGGTATTGTGCTAGC | 0.131 |
7 | TTGATGGCTAGCTCAGTCCTAGGTACTATGCTAGC | 0.147 |
8 | TTGACGGCTAGCTCAGTCCTAGGTACTGTGCTAGC | 0.192 |
9 | TTGATGGCTAGCTCAGTCCTAGGTACAATGCTAGC | 0.235 |
10 | TTGATGGCTAGCTCAGTCCTAGGTATAGTGCTAGC | 0.265 |
11 | TTGACGGCTAGCTCAGTCCTAGGTATTGTGCTAGC | 0.297 |
12 | TTGATGGCTAGCTCAGTCCTAGGTATAATGCTAGC | 0.371 |
13 | TTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGC | 0.457 |
14 | TTGACAGCTAGCTCAGTCCTAGGTATTGTGCTAGC | 0.645 |
15 | TTGACAGCTAGCTCAGTCCTAGGTATAATGCTAGC | 1.000 |
Table 1 Constitutive promoters used in this study[16]
No. | 核苷酸序列(5'→3') | 相对强度 |
---|---|---|
1 | CTTATGGCTAGCTCAGTCCTAGGGACAGTGCTAGC | 0.024 |
2 | TTTACGGCTAGCTCAGTCCTAGGGATAGTGCTAGC | 0.045 |
3 | CTGACGGCTAGCTCAGTCCTAGGGATAGTGCTAGC | 0.065 |
4 | TTGATGGCTAGCTCAGTCCTAGGGATTATGCTAGC | 0.078 |
5 | TTGATGGCTAGCTCAGTCCTAGGTACAGTGCTAGC | 0.116 |
6 | TTGATGGCTAGCTCAGTCCTAGGTATTGTGCTAGC | 0.131 |
7 | TTGATGGCTAGCTCAGTCCTAGGTACTATGCTAGC | 0.147 |
8 | TTGACGGCTAGCTCAGTCCTAGGTACTGTGCTAGC | 0.192 |
9 | TTGATGGCTAGCTCAGTCCTAGGTACAATGCTAGC | 0.235 |
10 | TTGATGGCTAGCTCAGTCCTAGGTATAGTGCTAGC | 0.265 |
11 | TTGACGGCTAGCTCAGTCCTAGGTATTGTGCTAGC | 0.297 |
12 | TTGATGGCTAGCTCAGTCCTAGGTATAATGCTAGC | 0.371 |
13 | TTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGC | 0.457 |
14 | TTGACAGCTAGCTCAGTCCTAGGTATTGTGCTAGC | 0.645 |
15 | TTGACAGCTAGCTCAGTCCTAGGTATAATGCTAGC | 1.000 |
12 h 1,3-PDO/(g/L) | ||||
---|---|---|---|---|
0.024 | 0.116 | -3.730 | -2.154 | 1.13±0.80 |
0.147 | 0.065 | -1.917 | -2.733 | 0.41±0.99 |
0.192 | 0.045 | -1.650 | -3.101 | 3.20±0.75 |
0.045 | 0.192 | -3.101 | -1.650 | 0.15±1.16 |
0.131 | 0.265 | -2.033 | -1.328 | 2.97±0.13 |
0.116 | 0.131 | -2.154 | -2.033 | 3.78±0.39 |
0.235 | 0.457 | -1.448 | -0.783 | 8.22±0.69 |
0.235 | 0.371 | -1.448 | -0.992 | 7.54±0.83 |
0.265 | 0.192 | -1.328 | -1.650 | 6.31±0.55 |
0.371 | 0.192 | -0.992 | -1.650 | 3.15±0.16 |
0.371 | 0.645 | -0.992 | -0.439 | 7.31±0.99 |
0.645 | 0.045 | -0.439 | -3.101 | 0.90±0.03 |
0.024 | 1.000 | -3.730 | 0 | 0.08±0.01 |
0.371 | 0.457 | -0.992 | -0.783 | 3.05±0.56 |
0.291 | 1.000 | -1.234 | 0 | 12.01±0.33 |
Table 2 Raw data of 1,3-propanediol synthesis by Vibrio natriegens
12 h 1,3-PDO/(g/L) | ||||
---|---|---|---|---|
0.024 | 0.116 | -3.730 | -2.154 | 1.13±0.80 |
0.147 | 0.065 | -1.917 | -2.733 | 0.41±0.99 |
0.192 | 0.045 | -1.650 | -3.101 | 3.20±0.75 |
0.045 | 0.192 | -3.101 | -1.650 | 0.15±1.16 |
0.131 | 0.265 | -2.033 | -1.328 | 2.97±0.13 |
0.116 | 0.131 | -2.154 | -2.033 | 3.78±0.39 |
0.235 | 0.457 | -1.448 | -0.783 | 8.22±0.69 |
0.235 | 0.371 | -1.448 | -0.992 | 7.54±0.83 |
0.265 | 0.192 | -1.328 | -1.650 | 6.31±0.55 |
0.371 | 0.192 | -0.992 | -1.650 | 3.15±0.16 |
0.371 | 0.645 | -0.992 | -0.439 | 7.31±0.99 |
0.645 | 0.045 | -0.439 | -3.101 | 0.90±0.03 |
0.024 | 1.000 | -3.730 | 0 | 0.08±0.01 |
0.371 | 0.457 | -0.992 | -0.783 | 3.05±0.56 |
0.291 | 1.000 | -1.234 | 0 | 12.01±0.33 |
预测点 | 预测均值 | 预测方差 | 实际值 | 训练集RMSE |
---|---|---|---|---|
1 | 12.38 | 0.262 | 12.49 | 1.84×10-9 |
2 | 11.49 | 0.248 | 13.01 | 1.66×10-9 |
3 | 14.56 | 0.230 | 9.51 | 2.83×10-9 |
Table 3 Prediction point results of iterative process
预测点 | 预测均值 | 预测方差 | 实际值 | 训练集RMSE |
---|---|---|---|---|
1 | 12.38 | 0.262 | 12.49 | 1.84×10-9 |
2 | 11.49 | 0.248 | 13.01 | 1.66×10-9 |
3 | 14.56 | 0.230 | 9.51 | 2.83×10-9 |
1 | 朱丙田, 刘德华, 任海玉, 等. 1,3-丙二醇发酵条件的探索[J]. 化工冶金, 2000(4): 420-422. |
Zhu B T, Liu D H, Ren H Y, et al. Experiments on optimal conditions for 1,3-propanediol fermentation[J]. Engineering Chemistry & Metallurgy, 2000(4): 420-422. | |
2 | 李晓姝, 张霖, 高大成, 等. 发酵法生产1,3-丙二醇的研究进展[J]. 化工进展, 2017, 36(4): 1395-1403. |
Li X S, Zhang L, Gao D C, et al. Progress on the production of 1, 3-propanediol by fermentation[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1395-1403. | |
3 | 谢家明, 徐泽辉, 夏蓉晖, 等. 1,3-丙二醇制备工艺的研究进展[J]. 合成纤维, 2005, 34(2): 13-16, 48. |
Xie J M, Xu Z H, Xia R H, et al. Research progress on the technology for producing 1,3-propanediol[J]. Synthetic Fiber in China, 2005, 34(2): 13-16, 48. | |
4 | 刘德华, 刘宏娟, 程可可. 微生物发酵法生产1,3-丙二醇研究进展[J]. 合成纤维, 2005, 34(9): 11-15. |
Liu D H, Liu H J, Cheng K K. Research progress on the production of 1,3-propanediol by fermentation[J]. Synthetic Fiber in China, 2005, 34(9): 11-15. | |
5 | Huang H, Gong C S, Tsao G T. Production of 1,3-propanediol by Klebsiella pneumoniae [J]. Applied Biochemistry and Biotechnology, 2002, 98/99/100: 687-698. |
6 | 陈振, 刘宏娟, 刘德华. 有氧条件下Klebsiella pneumoniae发酵生产1, 3-丙二醇的研究[J]. 现代化工, 2006, 26(S2): 297-300. |
Chen Z, Liu H J, Liu D H. Study on 1,3-propanediol production by Klebsiella pneumoniae under aerobic conditions[J]. Modern Chemical Industry, 2006, 26(S2): 297-300. | |
7 | Zhang Y, Li Z H, Liu Y, et al. Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol[J]. Metabolic Engineering, 2021, 65: 52-65. |
8 | Jalasutram V, Jetty A. Optimization of 1,3-propanediol production by Klebsiella pneumoniae 141B using Taguchi methodology: improvement in production by cofermentation studies[J]. Research in Biotechnology, 2011, 2(2): 189-197. |
9 | Xu Q, Yang X T, Liu C W, et al. Chemical plant flare minimization via plantwide dynamic simulation[J]. Industrial & Engineering Chemistry Research, 2009, 48(7): 3505-3512. |
10 | Zhang A H, Zhu K Y, Zhuang X Y, et al. A robust soft sensor to monitor 1, 3-propanediol fermentation process by Clostridium butyricum based on artificial neural network[J]. Biotechnology and Bioengineering, 2020, 117(11): 3345-3355. |
11 | Zhou Y K, Li G, Dong J K, et al. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2018, 47: 294-302. |
12 | 李浩然, 邱彤. 基于因果分析的烧结生产状态预测模型[J]. 化工学报, 2021, 72(3): 1438-1446. |
Li H R, Qiu T. Sintering production state prediction model based on causal analysis[J]. CIESC Journal, 2021, 72(3): 1438-1446. | |
13 | Mockus J. Bayesian Approach to Global Optimization: Theory and Applications[M/OL]. Netherlands: Springer, 1989[2021-07-12]. . |
14 | Griffiths R R, Hernández-Lobato J M. Constrained Bayesian optimization for automatic chemical design using variational autoencoders[J]. Chemical Science, 2019, 11(2): 577-586. |
15 | Gómez-Bombarelli R, Wei J N, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules[J]. ACS Central Science, 2018, 4(2): 268-276. |
16 | Iverson S V, Haddock T L, Beal J, et al. CIDAR MoClo: improved MoClo assembly standard and new E. coli part library enable rapid combinatorial design for synthetic and traditional biology[J]. ACS Synthetic Biology, 2016, 5(1): 99-103. |
17 | Shahriari B, Swersky K, Wang Z Y, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175. |
18 | Brochu E, Cora V M, de Freitas N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning[EB/OL]. 2010. . |
19 | Rasmussen C E, Williams C K I. Gaussian Processes for Machine Learning[M]. Cambridge: The MIT Press, 2006. |
20 | Bull A D. Convergence rates of efficient global optimization algorithms[J]. Journal of Machine Learning Research, 2011, 12(10): 2879-2904. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[4] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[5] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[6] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[7] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[8] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[9] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[10] | Jinjia WEI, Lei LIU, Xiaoping YANG. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices [J]. CIESC Journal, 2023, 74(1): 60-73. |
[11] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[12] | Peng WEI, Jun CHEN, Zhiguo WANG, Fei LIU. Improved productivity strategy of simulated moving bed based on binary-partial-discard [J]. CIESC Journal, 2022, 73(7): 3099-3108. |
[13] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
[14] | Jing WAN, Lin ZHANG, Yachao FAN, Xiemin LIU, Peicheng LUO, Feng ZHANG, Zhibing ZHANG. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model [J]. CIESC Journal, 2022, 73(6): 2698-2707. |
[15] | Wenliang MENG, Guixian LI, Huairong ZHOU, Jingwei LI, Jian WANG, Ke WANG, Xueying FAN, Dongliang WANG. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen [J]. CIESC Journal, 2022, 73(4): 1714-1723. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||