CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 431-439.DOI: 10.11949/j.issn.0438-1157.20181145
• Process system engineering • Previous Articles Next Articles
Changhao WU(),Linlin LIU(),Lei ZHANG,Jian DU
Received:
2018-10-08
Revised:
2018-10-22
Online:
2019-02-05
Published:
2019-02-05
Contact:
Linlin LIU
通讯作者:
刘琳琳
作者简介:
<named-content content-type="corresp-name">吴长昊</named-content>(1994—),男,硕士研究生,<email>claude114@163.com</email>|刘琳琳(1985—),女,博士,副教授,<email>liulinlin@dlut.edu.cn</email>
基金资助:
CLC Number:
Changhao WU, Linlin LIU, Lei ZHANG, Jian DU. Inter-plant waste heat integration for industrial park using two medium fluids[J]. CIESC Journal, 2019, 70(2): 431-439.
吴长昊, 刘琳琳, 张磊, 都健. 采用两种中间介质的工业园区厂际余热集成[J]. 化工学报, 2019, 70(2): 431-439.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181145
Stream | F/(kW·K-1) | T in /℃ | T out/℃ | q/kW |
---|---|---|---|---|
1 2 3 | 400 400 100 | 250 225 120 | 185 110 50 | 26000 50000 7000 |
Table 1 Process data of heat source plant C
Stream | F/(kW·K-1) | T in /℃ | T out/℃ | q/kW |
---|---|---|---|---|
1 2 3 | 400 400 100 | 250 225 120 | 185 110 50 | 26000 50000 7000 |
Stream | F/(kW·K-1) | T in /℃ | T out/℃ | q/kW |
---|---|---|---|---|
plant A | ||||
1 | 200 | 60 | 90 | 6000 |
2 | 200 | 40 | 100 | 12000 |
3 | 150 | 50 | 150 | 15000 |
4 | 200 | 50 | 160 | 22000 |
plant B | ||||
5 | 300 | 20 | 100 | 24000 |
6 | 600 | 50 | 70 | 12000 |
7 | 600 | 130 | 180 | 12000 |
Table 2 Process data of heat sink plants
Stream | F/(kW·K-1) | T in /℃ | T out/℃ | q/kW |
---|---|---|---|---|
plant A | ||||
1 | 200 | 60 | 90 | 6000 |
2 | 200 | 40 | 100 | 12000 |
3 | 150 | 50 | 150 | 15000 |
4 | 200 | 50 | 160 | 22000 |
plant B | ||||
5 | 300 | 20 | 100 | 24000 |
6 | 600 | 50 | 70 | 12000 |
7 | 600 | 130 | 180 | 12000 |
Item | Case 1 | Case 2 | Case 3 |
---|---|---|---|
cost of heat exchangers/(USD·a-1) | 566873 | 796146 | 889677 |
hot utility /kW | 42000 | 42000 | 42743.1 |
cold utility /kW | 0 | 0 | 743.1 |
utility cost/(USD·a-1) | 6300000 | 6300000 | 6417410 |
cost of piping and pumping/(USD·a-1) | 460345 | 428479 | 439814 |
TAC of HEN/(USD·a-1) | 7327217 | 7524625 | 7746901 |
Table 3 Cost results of HENs
Item | Case 1 | Case 2 | Case 3 |
---|---|---|---|
cost of heat exchangers/(USD·a-1) | 566873 | 796146 | 889677 |
hot utility /kW | 42000 | 42000 | 42743.1 |
cold utility /kW | 0 | 0 | 743.1 |
utility cost/(USD·a-1) | 6300000 | 6300000 | 6417410 |
cost of piping and pumping/(USD·a-1) | 460345 | 428479 | 439814 |
TAC of HEN/(USD·a-1) | 7327217 | 7524625 | 7746901 |
A | ——过程换热器面积,m2 |
---|---|
A hu,A cu | ——分别为热、冷公用工程面积,m2 |
A f | ——年度费用因子 |
B,D | ——换热器面积费用系数 |
C hu,C cu | ——分别为热、冷公用工程单位费用,USD?kW-1?a-1 |
CH | ——换热器的固定安装费用,USD?a-1 |
ec(p,i) | ——p厂i过程流股的热负荷,kW |
ec(p,j) | ——p厂j过程流股的热负荷,kW |
F(p,i) | ——p厂中i过程流股的热容流率,kW?K-1 |
F(p,j) | ——p厂中j过程流股的热容流率,kW?K-1 |
F c(p,g) | ——p厂g冷介质流股的热容流率,kW?K-1 |
F h(p,g) | ——p厂g热介质流股的热容流率,kW?K-1 |
f(p,g,p') | ——p厂至p'厂g介质流股热容流率,kW?K-1 |
f(p',g,p) | ——p'厂至p厂g介质流股热容流率,kW?K-1 |
K | ——传热系数 |
NOK | ——换热器网络总级数 |
piping | ——管道费用,USD?a-1 |
pumping | ——泵送费用,USD?a-1 |
q h,q c | ——分别为热、冷中间介质与过程流股换热量,kW |
q hu,q cu | ——分别为热、冷公用工程换热量,kW |
ΔT | ——换热器的平均传热温差,℃ |
ΔT min | ——最小传热温差,℃ |
t(p,i,k) | ——p厂i热过程流股在k级的温度,℃ |
t(p,j,k) | ——p厂j冷过程流股在k级的温度,℃ |
t c(p,g,k) | ——p厂g冷中间介质流股在k级的温度,℃ |
t c , in(p,g) | ——g冷中间介质流股入p厂的温度,℃ |
t c , out(p′,g) | ——g冷中间介质流股出p′厂的温度,℃ |
t h(p,g,k) | ——p厂g热中间介质流股在k级的温度,℃ |
t h , in(p,g) | ——g热中间介质流股入p厂的温度,℃ |
t h , out(p′,g) | ——g热中间介质流股出p′厂的温度,℃ |
t in(p,i) | ——p厂i热过程流股的起始温度,℃ |
t in(p,j) | ——p厂j热过程流股的起始温度,℃ |
t out(p,i) | ——p厂i热过程流股的目标温度,℃ |
t out(p,j) | ——p厂j热过程流股的目标温度,℃ |
dt c(p,i,g,k) | ——i流股与g流股于p厂k级的温差,℃ |
dt cu(p,i) | ——i流股与冷公用工程于p厂的温差,℃ |
dt h(p,j,g,k) | ——j流股与g流股于p厂k级的温差,℃ |
dt hu(p,j) | ——j流股与热公用工程于p厂的温差,℃ |
y | ——表示厂际管道是否存在的二元变量 |
z | ——表示换热器是否存在的二元变量 |
Γ | ——热流股与冷流股的温差最大值,℃ |
下角标 | |
g | ——中间介质流股 |
i | ——热过程流股 |
j | ——冷过程流股 |
k | ——换热器网络级数 |
p | ——单厂 |
p' | ——p厂以外的其余单厂 |
A | ——过程换热器面积,m2 |
---|---|
A hu,A cu | ——分别为热、冷公用工程面积,m2 |
A f | ——年度费用因子 |
B,D | ——换热器面积费用系数 |
C hu,C cu | ——分别为热、冷公用工程单位费用,USD?kW-1?a-1 |
CH | ——换热器的固定安装费用,USD?a-1 |
ec(p,i) | ——p厂i过程流股的热负荷,kW |
ec(p,j) | ——p厂j过程流股的热负荷,kW |
F(p,i) | ——p厂中i过程流股的热容流率,kW?K-1 |
F(p,j) | ——p厂中j过程流股的热容流率,kW?K-1 |
F c(p,g) | ——p厂g冷介质流股的热容流率,kW?K-1 |
F h(p,g) | ——p厂g热介质流股的热容流率,kW?K-1 |
f(p,g,p') | ——p厂至p'厂g介质流股热容流率,kW?K-1 |
f(p',g,p) | ——p'厂至p厂g介质流股热容流率,kW?K-1 |
K | ——传热系数 |
NOK | ——换热器网络总级数 |
piping | ——管道费用,USD?a-1 |
pumping | ——泵送费用,USD?a-1 |
q h,q c | ——分别为热、冷中间介质与过程流股换热量,kW |
q hu,q cu | ——分别为热、冷公用工程换热量,kW |
ΔT | ——换热器的平均传热温差,℃ |
ΔT min | ——最小传热温差,℃ |
t(p,i,k) | ——p厂i热过程流股在k级的温度,℃ |
t(p,j,k) | ——p厂j冷过程流股在k级的温度,℃ |
t c(p,g,k) | ——p厂g冷中间介质流股在k级的温度,℃ |
t c , in(p,g) | ——g冷中间介质流股入p厂的温度,℃ |
t c , out(p′,g) | ——g冷中间介质流股出p′厂的温度,℃ |
t h(p,g,k) | ——p厂g热中间介质流股在k级的温度,℃ |
t h , in(p,g) | ——g热中间介质流股入p厂的温度,℃ |
t h , out(p′,g) | ——g热中间介质流股出p′厂的温度,℃ |
t in(p,i) | ——p厂i热过程流股的起始温度,℃ |
t in(p,j) | ——p厂j热过程流股的起始温度,℃ |
t out(p,i) | ——p厂i热过程流股的目标温度,℃ |
t out(p,j) | ——p厂j热过程流股的目标温度,℃ |
dt c(p,i,g,k) | ——i流股与g流股于p厂k级的温差,℃ |
dt cu(p,i) | ——i流股与冷公用工程于p厂的温差,℃ |
dt h(p,j,g,k) | ——j流股与g流股于p厂k级的温差,℃ |
dt hu(p,j) | ——j流股与热公用工程于p厂的温差,℃ |
y | ——表示厂际管道是否存在的二元变量 |
z | ——表示换热器是否存在的二元变量 |
Γ | ——热流股与冷流股的温差最大值,℃ |
下角标 | |
g | ——中间介质流股 |
i | ——热过程流股 |
j | ——冷过程流股 |
k | ——换热器网络级数 |
p | ——单厂 |
p' | ——p厂以外的其余单厂 |
1 | Lowe E A , Moran S R , Holmes D B . Eco-Industrial Parks: A Handbook for Local Development Teams[M]. Oakland, CA: Indigo Development, 1992: 13-14. |
2 | Linnhoff B . Pinch analysis—a state-of-the-art overview[J]. Chemical Engineering Research & Design, 1993, 71: 503-522. |
3 | Shenoy U V . Heat Exchanger Network Synthesis Process Optimization by Energy and Resource Analysis[M]. Houston, TX: Gulf Professional Publishing, 1995: 367-398. |
4 | Smith R . Chemical Process Design and Integration[M]. UK:John Wiley&Sons, 2005. |
5 | El-Halwagi M M . Process Integration: Volume 7 (Process Systems Engineering) [M]. USA: Academic Press, 2006. |
6 | Garbs M . Pinch analysis and process integration: a user guide on process integration for the efficient use of energy[J]. Journal of Cleaner Production, 2016, 110: 203. |
7 | Morton R J , Linnhoff B . Individual process improvements in the context of site wide interactions[C]//IChemE 11th Annual Research Meeting. UK: Bath, 1984. |
8 | Ahmad S , Hui D C W . Heat recovery between areas of integrity[J]. Computers & Chemical Engineering, 1991, 15(12): 809-832. |
9 | Hu C W , Ahmad S . Total site heat integration using the utility system[J]. Computers & Chemical Engineering, 1994, 18(8): 729-742. |
10 | Goršek A , Glavič P , Bogataj M . Design of the optimal total site heat recovery system using SSSP approach[J]. Chemical Engineering & Processing Process Intensification, 2006, 45(5): 372-382. |
11 | Rodera H , Bagajewicz M J . Targeting procedures for energy savings by heat integration across plants[J]. AIChE Journal, 1999, 45(8): 1721-1742. |
12 | Bagajewicz M , Rodera H . Energy savings in the total site heat integration across many plants[J]. Computers & Chemical Engineering, 2000, 24(2): 1237-1242. |
13 | And H R , Bagajewicz M J . Multipurpose heat-exchanger networks for heat integration across plants[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5585-5603. |
14 | Bagajewicz M , Rodera H . Multiple plant heat integration in a total site[J]. AIChE Journal, 2002, 48(10): 2255-2270. |
15 | Bandyopadhyay S , Varghese J , Bansal V . Targeting for cogeneration potential through total site integration[J]. Applied Thermal Engineering, 2010, 30(1): 6-14. |
16 | Suaysompol K , Wood R M . Estimation of the installed cost of heat exchanger networks[J]. International Journal of Production Economics, 1993, 29(3): 303-312. |
17 | Jiang D , Chang C T . A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3794-3804. |
18 | Geng Y , Zhang P , Ulgiati S , et al . Energy analysis of an industrial park: the case of Dalian, China[J]. Science of the Total Environment, 2010, 408(22): 5273-5283. |
19 | Linnhoff B , Eastwood A R . Overall site optimisation by pinch technology[J]. Chemical Engineering Research & Design, 1997, 75(75): S138-S144. |
20 | Klemeš J , Dhole V R , Raissi K , et al . Targeting and design methodology for reduction of fuel, power and CO2 on total sites[J]. Applied Thermal Engineering, 1997, 17(8/9/10): 993-1003. |
21 | Khoshgoftar Manesha M H , Amidpoura M , Khamis Abadi S , et al . A new cogeneration targeting procedure for total site utility system[J]. Applied Thermal Engineering, 2013, 54(1): 272-280. |
22 | Chew K H , Klemeš J J , Alwi S R W , et al . Process modifications to maximise energy savings in total site heat integration[J]. Applied Thermal Engineering, 2015, 78: 731-739. |
23 | Chew K H , Klemeš J J , Alwi S R W , et al . Process modification of total site heat integration profile for capital cost reduction[J]. Applied Thermal Engineering, 2015, 89: 1023-1032. |
24 | Tarighaleslami A H , Walmsley T G , Atkins M J , et al . Heat transfer enhancement for site level indirect heat recovery systems using nanofluids as the intermediate fluid[J]. Applied Thermal Engineering, 2016, 105: 923-930. |
25 | Kapil A , Bulatov I , Smith R , et al . Process integration of low grade heat in process industry with district heating networks[J]. Energy, 2012, 44(1): 11-19. |
26 | Boldyryev S , Varbanov P S , Lund H , et al . Low potential heat utilization of bromine plant via integration on process and total site levels[J]. Energy, 2015, 90: 47-55. |
27 | Hackl R , Andersson E , Harvey S . Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)[J]. Energy, 2011, 36(8): 4609-4615. |
28 | Wang Y , Chang C , Feng X . A systematic framework for multi-plants heat integration combining direct and indirect heat integration methods[J]. Energy, 2015, 90: 56-67. |
29 | Bade M H , Bandyopadhyay S . Minimization of thermal oil flow rate for indirect integration of multiple plants[J]. Industrial & Engineering Chemistry Research, 2014, 53 (33): 13146-13156. |
30 | Chang C , Chen X , Wang Y , et al . Simultaneous optimization of multi-plant heat integration using intermediate fluid circles[J]. Energy, 2016, 121: 306-317. |
31 | Rosenthal R E . GAMS—A User’s Guide[M]. Washington D C: GAMS Development Corporation, 2012. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||