CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2594-2605.DOI: 10.11949/j.issn.0438-1157.20181307
• Process system engineering • Previous Articles Next Articles
Jiawei DENG1(),Xiaogang DENG1(),Yuping CAO1,Xiaoling ZHANG2
Received:
2018-11-12
Revised:
2019-04-13
Online:
2019-07-05
Published:
2019-07-05
Contact:
Xiaogang DENG
通讯作者:
邓晓刚
作者简介:
邓佳伟(1994—),女,硕士研究生,<email>1440278056@qq.com</email>
基金资助:
CLC Number:
Jiawei DENG, Xiaogang DENG, Yuping CAO, Xiaoling ZHANG. Incipient fault diagnosis method of nonlinear chemical process based on weighted statistical local KPCA[J]. CIESC Journal, 2019, 70(7): 2594-2605.
邓佳伟, 邓晓刚, 曹玉苹, 张晓玲. 基于加权统计局部核主元分析的非线性化工过程微小故障诊断方法[J]. 化工学报, 2019, 70(7): 2594-2605.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181307
变量 | 说明 |
---|---|
Ca | 反应物A从反应釜流出时的浓度 |
T | 反应釜的温度 |
Tc | 夹套出口冷却剂的温度 |
h | 反应釜液位高度 |
Q | 反应釜流出物料的浓度 |
Qf | 进料A的流量 |
Qaf Tf | 反应釜进料A的浓度 进料A的温度 |
Qc | 夹套内冷却剂的流量 |
Tcf | 夹套入口冷却剂温度 |
Table 1 Variable table for CSTR control system
变量 | 说明 |
---|---|
Ca | 反应物A从反应釜流出时的浓度 |
T | 反应釜的温度 |
Tc | 夹套出口冷却剂的温度 |
h | 反应釜液位高度 |
Q | 反应釜流出物料的浓度 |
Qf | 进料A的流量 |
Qaf Tf | 反应釜进料A的浓度 进料A的温度 |
Qc | 夹套内冷却剂的流量 |
Tcf | 夹套入口冷却剂温度 |
故障 | 描述 |
---|---|
1 2 3 4 5 | 反应釜进料A的浓度Caf发生斜坡变化,幅值为10-5 催化剂的活性以斜坡变化失活,幅值为0.7 传热量Uac发生斜坡变化,幅值为-10 反应器内温度传感器出现偏差,幅值为0.06 夹套温度传感器出现偏差,幅值为0.8 |
Table 2 Fault patterns for CSTR control system
故障 | 描述 |
---|---|
1 2 3 4 5 | 反应釜进料A的浓度Caf发生斜坡变化,幅值为10-5 催化剂的活性以斜坡变化失活,幅值为0.7 传热量Uac发生斜坡变化,幅值为-10 反应器内温度传感器出现偏差,幅值为0.06 夹套温度传感器出现偏差,幅值为0.8 |
故障 | KPCA | SLKPCA | WSLKPCA | |||
---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |
1 | 7.14 | 0.71 | 58.71 | 25.71 | 60.29 | 54 |
2 | 2.71 | 1.71 | 51.57 | 61.29 | 56 | 62.57 |
3 | 1.29 | 3.57 | 7.14 | 60.86 | 15.71 | 61 |
4 | 1 | 0.71 | 25.29 | 22.57 | 53.71 | 37.29 |
5 | 1.43 | 3.71 | 5.86 | 90.86 | 16.14 | 90.86 |
平均 | 2.71 | 2.00 | 29.71 | 52.26 | 40.37 | 61.14 |
Table 3 Fault detection rates of 5 faults/%
故障 | KPCA | SLKPCA | WSLKPCA | |||
---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |
1 | 7.14 | 0.71 | 58.71 | 25.71 | 60.29 | 54 |
2 | 2.71 | 1.71 | 51.57 | 61.29 | 56 | 62.57 |
3 | 1.29 | 3.57 | 7.14 | 60.86 | 15.71 | 61 |
4 | 1 | 0.71 | 25.29 | 22.57 | 53.71 | 37.29 |
5 | 1.43 | 3.71 | 5.86 | 90.86 | 16.14 | 90.86 |
平均 | 2.71 | 2.00 | 29.71 | 52.26 | 40.37 | 61.14 |
故障 | KPCA | SLKPCA | WSLKPCA | |||
---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |
6 | 99.86 | 99.86 | 99.86 | 99.86 | 99.86 | 99.86 |
7 | 99.86 | 99.86 | 99.71 | 100 | 99.71 | 100 |
平均 | 99.86 | 99.86 | 99.79 | 99.93 | 99.79 | 99.93 |
Table 4 Fault detection rates of significant faults/%
故障 | KPCA | SLKPCA | WSLKPCA | |||
---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |
6 | 99.86 | 99.86 | 99.86 | 99.86 | 99.86 | 99.86 |
7 | 99.86 | 99.86 | 99.71 | 100 | 99.71 | 100 |
平均 | 99.86 | 99.86 | 99.79 | 99.93 | 99.79 | 99.93 |
故障 | KPCA | SLKPCA | WSLKPCA | |||
---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |
6 | 302 | 302 | 302 | 302 | 302 | 302 |
7 | 301 | 301 | 303 | 301 | 303 | 301 |
平均 | 301.5 | 301.5 | 302.5 | 301.5 | 302.5 | 301.5 |
Table 5 Fault detection times of significant faults/%
故障 | KPCA | SLKPCA | WSLKPCA | |||
---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |
6 | 302 | 302 | 302 | 302 | 302 | 302 |
7 | 301 | 301 | 303 | 301 | 303 | 301 |
平均 | 301.5 | 301.5 | 302.5 | 301.5 | 302.5 | 301.5 |
故障名称 | 描述 | 类型 |
---|---|---|
3 | D进料温度 | 阶跃 |
9 | D进料温度 | 随机 |
15 | 冷凝器冷却水阀门 | 粘滞 |
Table 6 Fault patterns for TE process
故障名称 | 描述 | 类型 |
---|---|---|
3 | D进料温度 | 阶跃 |
9 | D进料温度 | 随机 |
15 | 冷凝器冷却水阀门 | 粘滞 |
故障 | KPCA[ | SLKPCA[ | WSLKPCA | |||
---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |
3 | 3.2 | 0.4 | 25.5 | 0.6 | 32 | 2.13 |
9 | 3.7 | 0.5 | 16.9 | 0 | 26.5 | 23.63 |
15 | 8.9 | 1.1 | 25.6 | 14 | 20.75 | 20.13 |
平均 | 5.27 | 0.67 | 22.67 | 4.87 | 26.42 | 15.30 |
Table 7 Fault detection rates of TE process/%
故障 | KPCA[ | SLKPCA[ | WSLKPCA | |||
---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |
3 | 3.2 | 0.4 | 25.5 | 0.6 | 32 | 2.13 |
9 | 3.7 | 0.5 | 16.9 | 0 | 26.5 | 23.63 |
15 | 8.9 | 1.1 | 25.6 | 14 | 20.75 | 20.13 |
平均 | 5.27 | 0.67 | 22.67 | 4.87 | 26.42 | 15.30 |
1 | ZhangS, ZhaoC. Stationarity test and Bayesian monitoring strategy for fault detection in nonlinear multimode processes[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 168: 45-61. |
2 | 韩敏, 张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66(6): 2139-2149. |
HanM, ZhangZ K. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. Journal of Chemical Industry and Engineering, 2015, 66(6): 2139-2149. | |
3 | GeZ, SongZ, DingS X, et al. Data mining and analytics in the process industry: the role of machine learning[J]. IEEE Access, 2017; 5: 20590-20616. |
4 | 王磊, 邓晓刚, 徐莹, 等. 基于变量子域PCA的故障检测方法[J]. 化工学报, 2016, 67(10): 4300-4308. |
WangL, DengX G, XuY, et al. Fault detection method based on variable sub-region PCA[J]. CIESC Journal, 2016, 67(10): 4300-4308. | |
5 | DengX, TianX, ChenS, et al. Fault discriminant enhanced kernel principal component analysis incorporating prior fault information for monitoring nonlinear processes[J]. Chemom. Intell. Lab. Syst., 2017, 162: 21-34. |
6 | 文成林, 吕菲亚, 包哲静, 等. 基于数据驱动的微小故障诊断方法综述[J]. 自动化学报, 2016, 42(9): 1285-1299. |
WenC L, LyuF Y, BaoZ J, et al. A review of data driven-based incipient fault diagnosis[J]. Acta Automatica Sinica, 2016, 42(9): 1285-1299. | |
7 | 李娟, 周东华, 司小胜, 等. 微小故障诊断方法综述[J]. 控制理论与应用, 2012, 29(12): 1517-1529. |
LiJ, ZhouD H, SiX S, et al. Review of incipient fault diagnosis methods[J]. Control Theory and Applications, 2012, 29(12): 1517-1529. | |
8 | ShenY, StevenX D, AdelH, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9): 1567-1581. |
9 | 李元, 宋玉成. MWMPCA在过程故障检测与诊断中的应用[J]. 沈阳化工大学学报, 2010, 24(2): 170-174. |
LiY, SongY C. Application of MWMPCA in process fault detection and diagnosis[J]. Journal of Shenyang University of Chemical Technology 2010, 24(2): 170-174. | |
10 | 王政, 孙锦程, 王迎春, 等. 基于复杂网络理论的符号有向图(SDG)化工故障诊断[J]. 化工进展, 2016, 35(5): 1344-1352. |
WangZ, SunJ C, WangY C, et al. Research on chemical process signed directed graph(SDG) fault diagnosis based on complex network[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1344-1352. | |
11 | 郑鑫, 田学民, 张汉元. 基于动态稀疏保局投影的故障检测方法[J]. 化工学报, 2016, 67(3): 833-838. |
ZhengX, TianX M, ZhangH Y. Fault detection method based on dynamic sparse locality preserving projections[J]. CIESC Journal, 2016, 67(3): 833-838. | |
12 | WoldS. Exponentially weighted moving principal components analysis and projections to latent structures[J]. Chemometrics & Intelligent Laboratory Systems, 1994, 23(1): 149-161. |
13 | HarmoucheJ, DelphaC, DialloD. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part I[J]. Signal Processing, 2014, 94(1): 278-287. |
14 | ChenH, JiangB, LuN. An improved incipient fault detection method based on Kullback-Leibler divergence[J]. ISA Transaction, 2018, 79: 127-136. |
15 | GeW, WangJ, ZhouJ, et al. Incipient fault detection based on fault extraction and residual evaluation[J]. Industrial & Engineering Chemistry Research, 2015, 54(14): 3664-3677. |
16 | JiH, HeX, ShangJ, et al. Exponential smoothing reconstruction approach for incipient fault isolation[J]. Ind. Eng. Chem. Res., 2018, 57(18), 6353-6363. |
17 | 尚骏, 陈茂银, 周东华. 基于变元统计分析的微小故障检测[J]. 上海交通大学学报, 2015, 49(6): 799-805. |
ShangJ, ChenM Y, ZhouD H. Incipient fault detection using transformed component statistical analysis[J]. Journal of Shanghai Jiaotong University, 2015, 49(6): 799-805. | |
18 | ChenH, JiangB, LuN, et al. Deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains[J]. IEEE Trans. Veh. Technol., 2018, 67(6): 4819-4830. |
19 | ZhangS, ZhaoC, GaoF. Incipient fault detection for multiphase batch processes with limited batches[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 1-15. |
20 | ZhaoC, GaoF. A sparse dissimilarity analysis algorithm for incipient fault isolation with no priori fault information[J]. Control Engineering Practice, 2017, 65: 70-82. |
21 | ZhaoB, ShiH, SongB, et al. Quality weakly related fault detection based on weighted Dual-Step feature extraction[J]. IEEE Access, 2019, PP(99): 1-1. |
22 | GeZ, YangC, SongZ. Improved kernel PCA-based monitoring approach for nonlinear processes[J]. Chemical Engineering Science, 2009, 64(9): 2245-2255. |
23 | 吴希军. 基于主元分析方法的空调系统传感器故障诊断研究[D]. 秦皇岛: 燕山大学, 2005. |
WuX J . Study of the sensor fault diagnosis in air conditioning system based on PCA[D]. Qinhuangdao: Yanshan University, 2005. | |
24 | 张成, 李元. 基于统计模量分析间歇过程故障检测方法研究[J]. 仪器仪表学报, 2013, 34(9): 2103-2110. |
ZhangC, LiY. Study on the fault detection method in batch process based on statistical pattern analysis[J]. Chinese Journal of Scientific Instrument, 2013, 34(9): 2103-2110. | |
25 | LeeJ M, YooC K, LeeI B. Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers & Chemical Engineering, 2004, 28(9): 1837-1847. |
26 | 赵忠盖, 刘飞. 基于稀疏核主元分析的在线非线性过程监控[J]. 化工学报, 2008, 59(7): 1773-1777. |
ZhaoZ G, LiuF. On-line nonlinear process monitoring based on sparse kernel principal component analysis[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(7): 1773-1777. | |
27 | KrugeraU. Improved principal component monitoring using the local approach[J]. Automatica, 2007, 43(9): 1532-1542. |
28 | 胡金海, 谢寿生, 骆广琦, 等. 一种基于贡献率图的KPCA故障识别方法[J]. 系统工程与电子技术, 2008, 30(3): 572-576. |
HuJ H, XieS S, LuoG Q, et al. Fault identification method of kernel principal component analysis based on contribution plots and its application[J]. Systems Engineering and Electronics, 2008, 30(3): 572-576. | |
29 | ChenH M, VarshneyP K, AroraM K. Performance of mutual information similarity measure for registration of multitemporal remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11): 2445-2454. |
30 | KeysD, KholikovS, PevtsovA A. Application of mutual information methods in time distance helioseismology[J]. Solar Physics, 2015, 290(3): 659-671. |
31 | QianW, ShuW. Mutual information criterion for feature selection from incomplete data[J]. Neurocomputing, 2015, 168: 210-220. |
32 | HaeriM A, EbadzadehM M. Estimation of mutual information by the fuzzy histogram[J]. Fuzzy Optimization and Decision Making. 2014, 13(3): 287-318. |
33 | 周东华, 李钢, 李元. 数据驱动的工业过程故障诊断技术: 基于主元分析与偏最小二乘的方法[M]. 北京: 科学出版社, 2011. |
ZhouD H, LiG, LiY. Data Driven Industrial Process Fault Diagnosis Technology: Method Based on Principal Component Analysis and Partial Least Squares[M]. Beijing: Science Press, 2011. | |
34 | DengX, TianX. Multimode process fault detection using local neighborhood similarity analysis[J]. Chinese Journal of Chemical Engineering, 2014, 22(11/12): 1260-1267. |
35 | DengX, WangL. Modified kernel principal component analysis using double-weighted local outlier factor and its application to nonlinear process monitoring[J]. ISA Transactions, 2018, 72: 218-228. |
36 | LiN, YangY. Ensemble kernel principal component analysis for improved nonlinear process monitoring[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 318-329. |
37 | TongC, SongY, YanX. Distributed statistical process monitoring based on four-subspace construction and Bayesian inference[J]. Industrial & Engineering Chemistry Research, 2013, 52(29): 9897-9907. |
[1] | Guang WANG, Fashun SHAN, Yucheng QIAN, Jianfang JIAO. Incipient fault detection method for chemical process based on ensemble learning transfer entropy [J]. CIESC Journal, 2023, 74(7): 2967-2978. |
[2] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[3] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[4] | Qian MING, Yi GAO, Jian HU, Shengjie LI, Jinjiang WANG. Virtual sensing method for leakage fault of heat exchanger [J]. CIESC Journal, 2023, 74(4): 1836-1846. |
[5] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[6] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[7] | Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA [J]. CIESC Journal, 2022, 73(9): 3963-3972. |
[8] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[9] | Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation [J]. CIESC Journal, 2022, 73(7): 3131-3144. |
[10] | Miao LI, Hong ZHAO, Biao JIANG, Siyuan CHEN, Long YAN. Thermodynamic analysis on synthesis of key intermediate BaC2 in coal to acetylene [J]. CIESC Journal, 2022, 73(5): 1908-1919. |
[11] | Cheng ZHANG, Lizhi PAN, Yuan LI. Fault detection and diagnosis method based on weighted statistical feature KICA [J]. CIESC Journal, 2022, 73(2): 827-837. |
[12] | Hengyuan LIU, Haihui WANG, Jianhong XU. Advances in electrochemical systems for ammonia synthesis by electrocatalytic reduction of nitrogen [J]. CIESC Journal, 2022, 73(1): 32-45. |
[13] | Zhuang YUAN, Yiqun LING, Zhe YANG, Chuankun LI. Critical parameters prediction based on TA-ConvBiLSTM for chemical process [J]. CIESC Journal, 2022, 73(1): 342-351. |
[14] | ZHANG Chi, LI Hao, HU Haitao, ZHU Chong, ZHANG Yuying, NAN Guopeng, SHU Yue. Aircraft bearing fault diagnosis based on automatic feature engineering [J]. CIESC Journal, 2021, 72(S1): 430-436. |
[15] | GUO Linxin, MA Yangmin, QIANG Taotao, REN Longfang. Review on structure modification of plant tannins [J]. CIESC Journal, 2021, 72(5): 2448-2464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||