CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1367-1374.DOI: 10.11949/j.issn.0438-1157.20181328
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yong JIA1,2(),Jin JIANG1,Ren ZHAO1,Weilong RONG3,Liguo YIN1,Mingyan GU1,Hongming LONG2
Received:
2018-11-15
Revised:
2019-01-09
Online:
2019-04-05
Published:
2019-04-05
Contact:
Yong JIA
贾勇1,2(),蒋进1,赵忍1,荣卫龙3,殷李国1,顾明言1,龙红明2
通讯作者:
贾勇
作者简介:
贾勇(1981—),男,博士,副教授,<email>jiayong2000@163.com</email>
基金资助:
CLC Number:
Yong JIA, Jin JIANG, Ren ZHAO, Weilong RONG, Liguo YIN, Mingyan GU, Hongming LONG. Investigation of mass transfer coefficient of absorption of sulfur dioxide by ammonia[J]. CIESC Journal, 2019, 70(4): 1367-1374.
贾勇, 蒋进, 赵忍, 荣卫龙, 殷李国, 顾明言, 龙红明. 氨法烟气脱硫SO2吸收传质系数研究[J]. 化工学报, 2019, 70(4): 1367-1374.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181328
ug/ (m·s-1) | pH | (L/G)/ (L·m-3) | T/K | ×106 | ky/ (kmol·m-2·h-1) |
---|---|---|---|---|---|
2.16 | 5.5 | 2 | 298.15 | 253 | 2.04 |
2.16 | 5.5 | 2.5 | 298.15 | 250 | 2.41 |
2.16 | 5.5 | 3 | 298.15 | 196 | 2.74 |
2.16 | 5.5 | 3.5 | 298.15 | 214 | 2.85 |
2.16 | 5.5 | 4 | 298.15 | 184 | 3.20 |
2.16 | 5.15 | 3 | 298.15 | 202 | 3.21 |
2.16 | 5.39 | 3 | 298.15 | 198 | 3.34 |
2.16 | 5.44 | 3 | 298.15 | 196 | 3.38 |
2.16 | 5.58 | 3 | 298.15 | 188 | 3.62 |
2.16 | 5.68 | 3 | 298.15 | 184 | 3.75 |
2.16 | 5.7 | 3 | 298.15 | 179 | 3.89 |
2.16 | 5.73 | 3 | 298.15 | 174 | 4.05 |
2.16 | 5.83 | 3 | 298.15 | 165 | 4.35 |
2.16 | 5.95 | 3 | 298.15 | 162 | 4.45 |
1.77 | 5.5 | 3 | 298.15 | 184 | 3.11 |
2.16 | 5.5 | 3 | 298.15 | 196 | 3.28 |
2.56 | 5.5 | 3 | 298.15 | 220 | 3.39 |
2.95 | 5.5 | 3 | 298.15 | 226 | 3.43 |
3.34 | 5.5 | 3 | 298.15 | 233 | 3.54 |
2.56 | 5.5 | 2 | 298.15 | 262 | 2.14 |
2.56 | 5.5 | 2.5 | 298.15 | 227 | 2.58 |
2.56 | 5.5 | 3 | 298.15 | 208 | 2.93 |
2.56 | 5.5 | 3.5 | 298.15 | 199 | 3.12 |
2.56 | 5.5 | 4 | 298.15 | 188 | 3.37 |
2.56 | 5.15 | 2 | 298.15 | 181 | 3.54 |
2.56 | 5.39 | 2 | 298.15 | 177 | 3.65 |
2.56 | 5.44 | 2 | 298.15 | 173 | 3.75 |
2.56 | 5.58 | 2 | 298.15 | 164 | 4.01 |
2.56 | 5.68 | 2 | 298.15 | 159 | 4.15 |
2.56 | 5.7 | 2 | 298.15 | 153 | 4.33 |
2.56 | 5.73 | 2 | 298.15 | 148 | 4.50 |
2.56 | 5.83 | 2 | 298.15 | 137 | 4.84 |
2.56 | 5.95 | 2 | 298.15 | 134 | 4.95 |
1.77 | 5.5 | 2 | 298.15 | 215 | 2.80 |
2.16 | 5.5 | 2 | 298.15 | 208 | 2.93 |
2.56 | 5.5 | 2 | 298.15 | 201 | 3.07 |
2.95 | 5.5 | 2 | 298.15 | 197 | 3.15 |
3.34 | 5.5 | 2 | 298.15 | 193 | 3.26 |
Table 1 Experimental mass transfer rate of SO2 absorption
ug/ (m·s-1) | pH | (L/G)/ (L·m-3) | T/K | ×106 | ky/ (kmol·m-2·h-1) |
---|---|---|---|---|---|
2.16 | 5.5 | 2 | 298.15 | 253 | 2.04 |
2.16 | 5.5 | 2.5 | 298.15 | 250 | 2.41 |
2.16 | 5.5 | 3 | 298.15 | 196 | 2.74 |
2.16 | 5.5 | 3.5 | 298.15 | 214 | 2.85 |
2.16 | 5.5 | 4 | 298.15 | 184 | 3.20 |
2.16 | 5.15 | 3 | 298.15 | 202 | 3.21 |
2.16 | 5.39 | 3 | 298.15 | 198 | 3.34 |
2.16 | 5.44 | 3 | 298.15 | 196 | 3.38 |
2.16 | 5.58 | 3 | 298.15 | 188 | 3.62 |
2.16 | 5.68 | 3 | 298.15 | 184 | 3.75 |
2.16 | 5.7 | 3 | 298.15 | 179 | 3.89 |
2.16 | 5.73 | 3 | 298.15 | 174 | 4.05 |
2.16 | 5.83 | 3 | 298.15 | 165 | 4.35 |
2.16 | 5.95 | 3 | 298.15 | 162 | 4.45 |
1.77 | 5.5 | 3 | 298.15 | 184 | 3.11 |
2.16 | 5.5 | 3 | 298.15 | 196 | 3.28 |
2.56 | 5.5 | 3 | 298.15 | 220 | 3.39 |
2.95 | 5.5 | 3 | 298.15 | 226 | 3.43 |
3.34 | 5.5 | 3 | 298.15 | 233 | 3.54 |
2.56 | 5.5 | 2 | 298.15 | 262 | 2.14 |
2.56 | 5.5 | 2.5 | 298.15 | 227 | 2.58 |
2.56 | 5.5 | 3 | 298.15 | 208 | 2.93 |
2.56 | 5.5 | 3.5 | 298.15 | 199 | 3.12 |
2.56 | 5.5 | 4 | 298.15 | 188 | 3.37 |
2.56 | 5.15 | 2 | 298.15 | 181 | 3.54 |
2.56 | 5.39 | 2 | 298.15 | 177 | 3.65 |
2.56 | 5.44 | 2 | 298.15 | 173 | 3.75 |
2.56 | 5.58 | 2 | 298.15 | 164 | 4.01 |
2.56 | 5.68 | 2 | 298.15 | 159 | 4.15 |
2.56 | 5.7 | 2 | 298.15 | 153 | 4.33 |
2.56 | 5.73 | 2 | 298.15 | 148 | 4.50 |
2.56 | 5.83 | 2 | 298.15 | 137 | 4.84 |
2.56 | 5.95 | 2 | 298.15 | 134 | 4.95 |
1.77 | 5.5 | 2 | 298.15 | 215 | 2.80 |
2.16 | 5.5 | 2 | 298.15 | 208 | 2.93 |
2.56 | 5.5 | 2 | 298.15 | 201 | 3.07 |
2.95 | 5.5 | 2 | 298.15 | 197 | 3.15 |
3.34 | 5.5 | 2 | 298.15 | 193 | 3.26 |
1 | 周理明, 史永永, 李海洋, 等. 氨法烟气脱硫过程的工艺优化[J]. 化学工程, 2014, 42(4): 7-12. |
ZhouL M, ShiY Y, LiH Y, et al. Process optimization of ammonia process flue gas desulfurization process[J]. Chemical Engineering, 2014, 42(4): 7-12. | |
2 | 黄荣廷, 潘丹萍, 盛溢, 等. 氨法烟气脱硫过程中气溶胶颗粒生成特性[J]. 化工学报, 2015, 66(11): 4366-4372. |
HuangR T, PanD P, ShengY, et al. Aerosol particle formation characteristics in ammonia flue gas desulfurization process[J]. CIESC Journal, 2015, 66(11): 4366-4372. | |
3 | GaoH, LiC, ZengG, et al. Flue gas desulphurization based on limestone-gypsum with a novel wet-type PCF device[J]. Separation and Purification Technology, 2011, 76(3): 253-260. |
4 | 李锦时, 朱卫兵, 周金哲, 等. 喷雾干燥半干法烟气脱硫效率主要影响因素的实验研究[J]. 化工学报, 2014, 65(2): 724-730. |
LiJ S, ZhuW B, ZhouJ Z, et al. Experimental study on main influencing factors of spray drying semi-dry flue gas desulfurization efficiency[J]. CIESC Journal, 2014, 65(2): 724-730. | |
5 | 蔡毅, 程乐鸣, 许霖杰, 等. 循环流化床锅炉组合脱硫系统运行策略研究[J]. 中国电机工程学报, 2017, (1): 161-172. |
CaiY, ChengL M, XuL J, et al. Research on operation strategy of combined fluidized bed boiler combined desulfurization system[J]. Proceedings of the CSEE, 2017, (1): 161-172. | |
6 | GaoX, DingH, DuZ, et al. Gas–liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization [J]. Applied Energy, 2010, 87(8): 2647-2651. |
7 | JiaY, ZhongQ, FanX, et al. Kinetics of oxidation of total sulfite in the ammonia-based wet flue gas desulfurization process [J]. Chemical Engineering Journal, 2010, 164(1): 132-138. |
8 | WangS J, ZhuP, ZhangG, et al. Numerical simulation research of flow field in ammonia-based wet flue gas desulfurization tower [J]. Journal of the Energy Institute, 2015, 88(3): 284-291. |
9 | HeB, ZhengX, WenY, et al. Temperature impact on SO2 removal efficiency by ammonia gas scrubbing [J]. Energy Conversion & Management, 2003, 44(13): 2175-2188. |
10 | LongX L, LiW, XiaoW D, et al. Novel homogeneous catalyst system for the oxidation of concentrated ammonium sulfite [J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 260. |
11 | JiaY, YinL, XuY, et al. A model for performance of sulfite oxidation of ammonia-based flue gas desulfurization system [J]. Atmospheric Pollution Research, 2015, 6(6): 997-1003. |
12 | KajiR, HishinumaY, KurodaH. SO2 absorption by water droplets[J]. Journal of Chemical Engineering of Japan, 2006, 18(2): 169-172. |
13 | JavedK H, MahmudT, PurbaE. Enhancement of mass transfer in a spray tower using swirling gas flow [J]. Chemical Engineering Research & Design, 2006, 84(6): 465-477. |
14 | YiZ, XiangG, WangH, et al. A model for performance optimization of wet flue gas desulfurization systems of power plants[J]. Fuel Processing Technology, 2008, 89(11): 1025-1032. |
15 | 孙忠伟, 周屈兰, 惠世恩, 等. 气液双流程烟气脱硫塔内脱硫效率与传质性能的研究[J]. 热能动力工程, 2010, (3): 326-329. |
SunZ W, ZhouQ L, HuiS E, et al. Study on desulfurization efficiency and mass transfer performance in gas-liquid dual-flow flue gas desulfurization tower[J]. Thermal Power Engineering, 2010, (3): 326-329. | |
16 | HuL, WamgX, YuG, et al. Study on gas–liquid phase mass transfer coefficient of entrained flow reactor[J]. Chemical Engineering Journal, 2008, 141(1/2/3): 278-283. |
17 | MarionM, LepinasseE, SaboniA. SO2 absorption and desorption by an accelerating water droplet undergoing vaporization [J]. International Journal of Heat & Fluid Flow, 2006, 27(2): 290-297. |
18 | HixsonA W, ScottC E. Absorption of gases in spray towers [J]. Ind. Eng. Chem., 1935, 27: 307-314. |
19 | SchmidtD I B, StichlmairD I J. Two-phase flow and mass transfer in scrubbers [J]. Chemical Engineering & Technology, 1991, 14(3): 162-166. |
20 | CodoloM C, BizzoW A. Experimental study of the SO2, removal efficiency and volumetric mass transfer coefficients in a pilot-scale multi-nozzle spray tower [J]. International Journal of Heat & Mass Transfer, 2013, 66(6): 80-89. |
21 | BandyopadhayA, BiswasM N. Scrubbing of sulphur dioxide in a dual-flow scrubber[J]. J. India. Assoc. Environ. Manage, 1998, 26: 113-133. |
22 | ColleS, ThomasD, VanderschurenJ. Process simulation of sulphur dioxide abatement with hydrogen peroxide solutions in a packed column [J]. Chemical Engineering Research & Design, 2005, 83(1): 81-87. |
23 | LiuX, GuoZ, RoacheN F, et al. Henry s law constant and overall mass transfer coefficient for formaldehyde emission from small water pools under simulated indoor environmental conditions [J]. Environmental Science & Technology, 2015, 49(3): 1603-1610. |
24 | MichalskiJ A. Aerodynamic characteristics of flue gas desulfurization spray towers polydispersity consideration [J]. Industrial & Engineering Chemistry Research, 2000, 39(9): 3314-3324. |
25 | 戴干策, 陈敏恒. 化工流体力学[M]. 北京: 化学工业出版社, 1988.Dai G C, Chen M H. Chemical Engineering Fluid Mechanics [M]. Beijing: Chemical Industry Press, 1988. |
26 | FoglerH S. Elements of Chemical Reaction Engineering[M]. 4th ed. Prentice-Hall PTR, 2006. |
27 | MounsefJ R, SalamehD, LoukaN, et al. The effect of aeration conditions, characterized by the volumetric mass transfer coefficient KLa, on the fermentation kinetics of Bacillus thuringiensis kurstaki [J]. Journal of Biotechnology, 2015, 210: 100-106. |
28 | 刘敦禹, WallTerry, StangerRohan. 富氧燃烧烟气冷凝塔钠碱法脱硫过程SO2和CO2共同吸收建模与实验研究[J]. 化工学报, 2018, 69(9): 4019-4029. |
LiuD Y, WallT, StangerR. Experimental and modelling study on co-absorption of SO2 and CO2 during desulfurization process by flue gas cooler for pxy-fuel combustion flues gas[J]. CIESC Journal, 2018, 69(9): 4019-4029. | |
29 | MaS, ZangB, SongH, et al. Research on mass transfer of CO2, absorption using ammonia solution in spray tower [J]. International Journal of Heat & Mass Transfer, 2013, 67(12): 696-703. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||