CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 440-449.DOI: 10.11949/j.issn.0438-1157.20181356
• Process system engineering • Previous Articles Next Articles
Haisheng CHEN(),Tengfei WANG,Kejin HUANG(),Yang YUAN,Xing QIAN,Liang ZHANG
Received:
2018-11-16
Revised:
2018-11-28
Online:
2019-02-05
Published:
2019-02-05
Contact:
Kejin HUANG
通讯作者:
黄克谨
作者简介:
<named-content content-type="corresp-name">陈海胜</named-content>(1986—),男,博士,副教授,<email>chenhs@mail.buct.edu.cn</email>|黄克谨(1963—),男,博士,教授,<email>huangkj@mail.buct.edu.cn</email>
基金资助:
CLC Number:
Haisheng CHEN, Tengfei WANG, Kejin HUANG, Yang YUAN, Xing QIAN, Liang ZHANG. Decentralized control system designs for reactive distillation columns with external recycle[J]. CIESC Journal, 2019, 70(2): 440-449.
陈海胜, 王腾飞, 黄克谨, 苑杨, 钱行, 张亮. 外部环流反应精馏塔的分散控制方案设计[J]. 化工学报, 2019, 70(2): 440-449.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181356
参 数 | 数 值 |
---|---|
塔压/kPa | 1200 |
塔板数 | |
精馏段 | 19 |
反应段 | 11 |
提馏段 | 0 |
滞液量/kmol | |
冷凝器/再沸器 | 80 |
塔板 | 4 |
进料流量/(kmol/s) | |
A | 0.0126 |
B | 0.0126 |
进料塔板 | |
A | 32 |
B | 21 |
产物浓度/% (mol) | |
C | 47.5 |
D | 47.5 |
活化能/(kJ/kmol) | |
正向 | 50208 |
反向 | 71128 |
366 K时的反应速率/(kmol/(s·kmol)) | |
正向 | 0.008 |
反向 | 0.004 |
相对挥发度 A∶B∶C∶D | 8∶1∶4∶2 |
反应热/(kJ/kmol) | -20920 |
汽化潜热/(kJ/kmol) | 29053.7 |
饱和蒸气压常数 | |
A (Avp/Bvp) | 17.65/3862 |
B (Avp/Bvp) | 15.57/3862 |
C (Avp/Bvp) | 16.95/3862 |
D (Avp/Bvp) | 16.26/3862 |
Table 1 Physical properties and structure design specifications of hypothetic ideal quaternary exothermic reaction system
参 数 | 数 值 |
---|---|
塔压/kPa | 1200 |
塔板数 | |
精馏段 | 19 |
反应段 | 11 |
提馏段 | 0 |
滞液量/kmol | |
冷凝器/再沸器 | 80 |
塔板 | 4 |
进料流量/(kmol/s) | |
A | 0.0126 |
B | 0.0126 |
进料塔板 | |
A | 32 |
B | 21 |
产物浓度/% (mol) | |
C | 47.5 |
D | 47.5 |
活化能/(kJ/kmol) | |
正向 | 50208 |
反向 | 71128 |
366 K时的反应速率/(kmol/(s·kmol)) | |
正向 | 0.008 |
反向 | 0.004 |
相对挥发度 A∶B∶C∶D | 8∶1∶4∶2 |
反应热/(kJ/kmol) | -20920 |
汽化潜热/(kJ/kmol) | 29053.7 |
饱和蒸气压常数 | |
A (Avp/Bvp) | 17.65/3862 |
B (Avp/Bvp) | 15.57/3862 |
C (Avp/Bvp) | 16.95/3862 |
D (Avp/Bvp) | 16.26/3862 |
参数 | CS0_CRDC | CS1_RDC_TBER | CS2_RDC_TBER | |||
---|---|---|---|---|---|---|
KC | TI/s | KC | TI/s | KC | TI/s | |
塔顶液位 | 1 | — | 0.5 | — | 0.5 | — |
B进料流量 | 0.05 | — | 0.001 | — | 0.0005 | 240000 |
出料中C的浓度 | 1.36 | 3000 | 1.36 | 3000 | 0.68 | 6000 |
塔底液位 | 0.5 | — | 40 | — | 40 | — |
出料中D的浓度 | — | — | — | — | 0.4 | 4500 |
Table 2 Controller parameters for three control systems of CRDC and RDC_TBER
参数 | CS0_CRDC | CS1_RDC_TBER | CS2_RDC_TBER | |||
---|---|---|---|---|---|---|
KC | TI/s | KC | TI/s | KC | TI/s | |
塔顶液位 | 1 | — | 0.5 | — | 0.5 | — |
B进料流量 | 0.05 | — | 0.001 | — | 0.0005 | 240000 |
出料中C的浓度 | 1.36 | 3000 | 1.36 | 3000 | 0.68 | 6000 |
塔底液位 | 0.5 | — | 40 | — | 40 | — |
出料中D的浓度 | — | — | — | — | 0.4 | 4500 |
ΔHR | ——反应热,kJ/kmol |
---|---|
ΔHV | ——汽化潜热,kJ/kmol |
L | ——液相流量,kmol/s |
M | ——塔板滞液量, kmol |
rate | ——反应速率,kmol/s |
V | ——气相流量,kmol/s |
下角标 | |
i | ——组分 |
j | ——塔板 |
ΔHR | ——反应热,kJ/kmol |
---|---|
ΔHV | ——汽化潜热,kJ/kmol |
L | ——液相流量,kmol/s |
M | ——塔板滞液量, kmol |
rate | ——反应速率,kmol/s |
V | ——气相流量,kmol/s |
下角标 | |
i | ——组分 |
j | ——塔板 |
1 | 高鑫, 赵悦, 李洪, 等. 反应精馏过程耦合强化技术基础与应用研究述评[J]. 化工学报, 2018, 69(1): 218-238. |
GaoX, ZhaoY, LiH, et al. Review of basic and application investigation of reactive distillation technology for process intensification[J]. CIESC Journal, 2018, 69(1): 218-238. | |
2 | Segovia-hernandezJ G, HernandezS, PetricioletA B. Reactive distillation: a review of optimal design using deterministic and stochastic techniques[J]. Chem. Eng. Processing, 2015, 97: 134-143. |
3 | KissA A. Distillation technology-still young and full of breakthrough opportunities[J]. J. Chem. Tech. Bio., 2014, 89(4): 479-498. |
4 | KumarM V P, KaisthaN. Decentralized control of a kinetically controlled ideal reactive distillation column[J]. Chem. Eng. Sci., 2008, 63(1): 228-243. |
5 | HungS B, LeeM J, TangY T, et al. Control of different reactive distillation configurations[J]. AIChE Journal, 2006, 52(4): 1423-1440. |
6 | KaymakD B, UnluH, OfkeliT. Control of a reactive distillation column with double reactive sections for two-stage consecutive reactions[J]. Chem. Eng. Processing, 2016, 113: 86-93. |
7 | CaoY, HuangK J, YuanY, et al. Dynamics and control of reactive distillation columns with double reactive sections: feed-splitting influences[J]. Ind. Eng. Chem. Res., 2017, 56(28): 8029-8040. |
8 | ChenH S, HuangK J, LiuW, et al. Enhancing mass and energy integration by external recycle in reactive distillation columns[J]. AIChE Journal, 2013, 59(6): 2015-2032. |
9 | ChenH S, HuangK J, ZhangL, et al. Reactive distillation columns with a top-bottom external recycle[J]. Ind. Eng. Chem. Res., 2012, 51(44): 14473-14488. |
10 | ZhangL, ChenH S, YuanY, et al. Adopting feed splitting in design of reactive distillation columns with two reactive sections[J]. Chem. Eng. Processing., 2015, 89: 9-18. |
11 | ChenH S, ZhangL, HuangK J, et al. Reactive distillation columns with two reactive sections: feed splitting plus external recycle[J]. Chem. Eng. Processing, 2016, 108: 189-196. |
12 | YaoX H, HuangK J, ChenH S, et al. Employing top-bottom recycled reactive distillation to the separations of adipic acid and glutaric acid esterifications[J]. Ind. Eng. Chem. Res., 2013, 52(47): 16870-16879. |
13 | 陈海胜, 黄克谨, 王韶锋. 一种新型的双环流反应蒸馏塔[J]. 中国科技论文, 2013, 8(12): 1277-1281. |
ChenH S, HuangK J, WangS F. A novel reactive distillation column with two external recycles[J]. China Science Paper, 2013, 8(12): 1277-1281. | |
14 | YuN, LiL M, ChenM Q, et al. Novel reactive distillation process with two side streams for dimethyl adipate production[J]. Chem. Eng. Processing, 2017, 118: 9-18. |
15 | TungS T, YuC C. Effects of relative volatility ranking to the design of reactive distillation[J]. AIChE Journal, 2007, 53(5): 1278-1297. |
16 | NiuM W, RangaiahG P. Process retrofitting via intensification: a heuristic methodology and its application to isopropyl alcohol process[J]. Ind. Eng. Chem. Res., 2016, 55(12): 3614-3629. |
17 | LongN V D, LeeM Y. Review of retrofitting distillation columns using thermally coupled distillation sequences and dividing wall columns to improve energy efficiency[J]. J. Chem. Eng. Jap., 2014, 47(2): 87-108. |
18 | LuybenW L, YuC C. Reactive Distillation Design and Control[M]. New York: John Wiley & Sons Inc., 2008: 15-36. |
19 | KaymakD B, LuybenW L. Evaluation of a two-temperature control structure for a two-reactant/two-product type of reactive distillation column[J]. Chem. Eng. Sci., 2006, 61(13): 4432-4450. |
20 | KumarM V P, KaisthaN. Decentralized control of a kinetically controlled ideal reactive distillation column[J]. Chem. Eng. Sci., 2008, 63(1): 228-243. |
21 | KaymakD B, YilmazD, GurerA Z. Effect of relative volatilities on inferential temperature control of reactive distillation columns[J]. Ind. Eng. Chem. Res., 2011, 50(13): 8138-8152. |
22 | MathewA K, KaisthaN, KumarM V P. Control of quaternary ideal endothermic reactive distillation with and without internal heat integration[J]. Chem. Eng. Tech., 2016, 39(4): 775-785. |
23 | Al-ArfajM, LuybenW L. Comparison of alternative control structures for an ideal two-product reactive distillation column[J]. Ind. Eng. Chem. Res., 2000, 39(47): 3298-3307. |
24 | KumarM V P, KaisthaN. Reactive distillation column design for controllability: a case study[J]. Chem. Eng. Processing, 2009, 48(2): 606-616. |
25 | SharmaN, SinghK. Control of reactive distillation column: a review[J]. Int. J. Chem. React., 2010, 8(R5): 1-55. |
26 | 陈镭, 孙炜. 反应精馏法生产醋酸丁酯动态模拟[J]. 广东化工, 2015, 42(1): 5-8. |
ChenL, SunW. Dynamic simulation of reactive distillation synthesis of butyl acetate[J]. Guangdong Chem. Ind., 2015, 42(1): 5-8. | |
27 | 李洪, 孟莹, 李鑫钢, 等. 乙酸戊酯酯化反应精馏过程系统控制模拟及分析[J]. 化工进展, 2015, 34(12): 4165-4171. |
LiH, MengY, LiX G, et al. Dynamic simulation and analysis of reactive distillation column for production of amyl acetate[J]. Chem. Ind. Eng. Progress, 2015, 34(12): 4165-4171. | |
28 | Al-ArfajM, LuybenW L. Comparative control study of ideal and methyl acetate reactive distillation[J]. Chem. Eng. Sci., 2002, 57(24): 5039-5050. |
29 | MansouriS S, HuusomJ K, GaniR, et al. Systematic integrated process design and control of binary element reactive distillation processes[J]. AIChE Journal, 2016, 62(9): 3137-3154. |
30 | LuybenW L. Distillation Design and Control Using AspenTM Simulation[M]. New York: John Wiley & Sons Inc., 2013: 166-172. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[5] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[6] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[7] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[8] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[9] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[10] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[11] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[12] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[13] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[14] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[15] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||