CIESC Journal ›› 2019, Vol. 70 ›› Issue (6): 2244-2251.DOI: 10.11949/j.issn.0438-1157.20181424
• Energy and environmental engineering • Previous Articles Next Articles
Min ZHU1(),Shiyi CHEN1,Meng LI2,Yeheng SONG3,Lei ZHANG2,Wenguo XIANG1()
Received:
2018-11-29
Revised:
2019-01-17
Online:
2019-06-05
Published:
2019-06-05
Contact:
Wenguo XIANG
朱珉1(),陈时熠1,李蒙2,宋业恒3,张磊2,向文国1()
通讯作者:
向文国
作者简介:
<named-content content-type="corresp-name">朱珉</named-content>(1986—),男,博士研究生,<email>tomzhumin@163.com</email>
基金资助:
CLC Number:
Min ZHU, Shiyi CHEN, Meng LI, Yeheng SONG, Lei ZHANG, Wenguo XIANG. Thermodynamic and experimental analysis of chemical looping dry reforming with hydrogen production system[J]. CIESC Journal, 2019, 70(6): 2244-2251.
朱珉, 陈时熠, 李蒙, 宋业恒, 张磊, 向文国. 化学链干重整联合制氢热力学分析及实验[J]. 化工学报, 2019, 70(6): 2244-2251.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181424
Fig.3 Effect of [O]/CH4 on iron oxide distribution and carbon distribution during reaction of Fe2O3 with CH4 and CO2 mixed gases (ratio of CH4 to CO2 was 3)
1 | 赵健, 周伟, 汪吉辉, 等 . 甲烷干重整研究进展[J]. 天然气化工(C1化学与化工), 2011, (6): 53-60+65. |
Zhao J , Zhou W , Wang J H , et al . Research progress in dry-reforming of methane[J]. Natural Gas Chemical Industry, 2011, (6): 53-60+65. | |
2 | 吴王平, 江鹏, 苏少航, 等 . 贵金属催化剂在甲烷干重整中的研究[J]. 常州大学学报(自然科学版), 2015, 27(4): 31-37. |
Wu W P , Jiang P , Su S H , et al . Review on noble metal catalysts for dry reforming of methane[J]. Journal of Changzhou University (Natural Science Edition), 2015, 27(4): 31-37. | |
3 | Pakhare D , Spivey J . A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014, 43: 7813-7837. |
4 | Tao X M , Bai M G , Li X , et al . CH4-CO2 reforming by plasma — challenges and opportunities[J]. Progress in Energy and Combustion Science, 2011, 37: 113-124. |
5 | Caprariis B D , Filippis P D , Palma V , et al . Rh, Ru and Pt ternary perovskites type oxides BaZr(1- x ) Me x O3 for methane dry reforming[J]. Applied Catalysis A: General, 2016, 517: 47-55. |
6 | Luyben W L . Design and control of the dry methane reforming process[J]. Industrial & Engineering Chemistry Research, 2014, 53(37): 14423-14439. |
7 | 阮勇哲, 卢遥, 王胜平 . 甲烷干重整Ni基催化剂失活及抑制失活研究进展[J]. 化工进展, 2018, 37(10): 3850-3857. |
Ruan Y Z , Lu Y , Wang S P . Progress in deactivation and anti-deactivation of nickel-based catalysts for methane dry reforming[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3850-3857. | |
8 | Zeng S , Zhang L , Zhang X , et al . Modification effect of natural mixed rare earths on Co/gamma-Al2O3 catalysts for CH4/CO2 reforming to synthesis gas[J]. International Journal of Hydrogen, 2012, 37(13): 9994-10001. |
9 | Vasiliades M A , Makri M M , Djinoviec P , et al . Dry reforming of methane over 5 wt% Ni/Ce1- x Pr x O2- δ catalysts: performance and characterization of active and inactive carbon by transient isotopic techniques[J]. Applied Catalysis B: Environmental, 2016. 197: 168-183. |
10 | Adanez J , Abad A , Garcia L F , et al . Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282. |
11 | Ishida M , Kawamura K . Energy and Exergy analysis of a chemical process system with distributed parameters based on the energy -direction factor diagram[J]. Industrial Engineering and Chemistry Process Design & Development, 1982, 21(4): 690-702. |
12 | 金红光, 王宝群 . 化学能梯级利用机理探讨[J]. 工程热物理学报, 2004, 25(2): 181-184. |
Jin H G , Wang B Q . Principle of cascading utilization of chemical energy[J]. Journal of Engineering Thermophysics, 2004, 25(2): 181-184. | |
13 | Najera M , Solunke R , Gardner T , et al . Carbon capture and utilization via chemical looping dry reforming[J]. Chemical Engineering Research and Design, 2011, 89(9): 1533-1543. |
14 | Bhavsar S , Najera M , Veser G . Chemical looping dry reforming as novel, intensified process for CO2 activation[J]. Chemical Engineering and Technology, 2012, 35(7): 1281-1290. |
15 | Kang D , Lee M , Lim H S , et al . Chemical looping partial oxidation of methane with CO2 utilization on the ceria-enhanced mesoporous Fe2O3 oxygen carrier[J]. Fuel, 2015, 215: 787-798. |
16 | Kang D , Lim H S , Lee M , et al . Syngas production on a Ni-enhanced Fe2O3 /Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane[J]. Applied Energy, 2018, 211: 174-186. |
17 | Zhu M , Chen S Y , Ma S W , et al . Carbon formation on iron-based oxygen carriers during CH4 reduction period in chemical looping hydrogen generation process[J]. Chemical Engineering Journal, 2017, 325: 322–331. |
18 | Galvita V V , Poelman H , Detavernier C , et al . Catalyst-assisted chemical looping for CO2 conversion to CO[J]. Applied Catalysis B: Environmental, 2015, 164: 184-191. |
19 | Mattisson T , Lyngfelt A , Cho P . The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2 [J]. Fuel, 2001, 80(13): 1953-1962. |
20 | Bohn C D , Cleeton J P , Muller C R , et al . The kinetics of the reduction of iron oxide by carbon monoxide mixed with carbon dioxide[J]. AIChE Journal, 2017, 56(4): 1016–1029. |
21 | Debtanu M , Bryan J H , Yolanda A D , et al . Earth abundant perovskite oxides for low temperature CO2 conversion[J]. Energy Environmental Science, 2018, 11: 648-659. |
22 | Kathe M , Fryer C , Sandvik P , et al . Modularization strategy for syngas generation in chemical looping methane reforming systems with CO2 as feedstock[J]. AIChE Journal, 2017, 63(8): 3343–3360. |
23 | Kathe M , Empfield A , Sandvik P , et al . Utilization of CO2 as a partial substitute for methane feedstock in chemical looping methane–steam redox processes for syngas production[J]. Energy Environmental Science, 2017, 10(6): 1345–1349. |
24 | 许迪恺, Tong Andrew , 曾亮, 等 . 铁基移动床化学链技术进展[J]. 化工学报, 2014, 65(7): 2410-2415. |
Xu D K , Tong A , Zeng L , et al . Development on iron-based moving bed chemical looping process[J]. CIESC Journal, 2014, 65(7): 2410-2415. | |
25 | Kang K S , Kim C H , Bae K K , et al . Modeling a counter-current moving bed for fuel and steam reactors in the TRCL process[J]. International Journal of Hydrogen, 2012, 37(4): 3251–3260. |
26 | Xiang W , Chen S , Xue Z , et al . Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process[J]. International Journal of Hydrogen Energy, 2010, 35(16): 8580-8591. |
27 | Xue Z , Chen S , Wang D , et al . Design and fluid dynamic analysis of a three-fluidized-bed reactor system for chemical-looping hydrogen generation[J]. Industrial & Engineering Chemistry Research, 2012, 51(11): 4267-4278. |
28 | 史奇良, 陈时熠, 薛志鹏, 等 . 铁基载氧体化学链制氢特性实验研究[J]. 中国电机工程学报, 2011, 31(S1): 168-174. |
Shi Q L , Chen S Y , Xue Z P , et al . Experimental investigation of chemical looping hydrogen generation using iron oxides as oxygen carrier[J]. Proceedings of the CSEE, 2011, 31(S1): 168-174. | |
29 | Zhu M , Chen S Y , Soomro A , et al . Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation[J]. Applied Energy, 2018, 225: 912–921. |
30 | 玄伟伟, 张建胜 . 化学链燃烧铁基载氧体还原反应积炭趋势[J]. 化工学报, 2012, 63(3): 904-909. |
Xuan W W , Zhang J S . Carbon deposition during reduction in chemical-looping combustion with Fe-based oxygen carriers[J]. CIESC Journal, 2012, 63(3): 904-909. | |
31 | Cheng Z , Qin L , Guo M , et al . Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process[J]. Physical Chemistry Chemical Physics, 2016, 18(47): 32418–32428. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[3] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[4] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[5] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[6] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[7] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[8] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[9] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[10] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
[11] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[12] | Yue SONG, Qicheng ZHANG, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Synthesis of MoS2-based single atom catalyst and its application in electrocatalysis [J]. CIESC Journal, 2023, 74(2): 535-545. |
[13] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[14] | Xin LI, Shaojuan ZENG, Kuilin PENG, Lei YUAN, Xiangping ZHANG. Research progress and tendency of CO2 electrocatalytic reduction to syngas [J]. CIESC Journal, 2023, 74(1): 313-329. |
[15] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||