[1] |
Gil-Villegas A, Galindo A, Whitehead P J, Mills S J, Jackson G, Burgess A N. Statistical associating fluid theory for chain molecules with attractive potentials of variable range[J]. J. Chem. Phys., 1997, 106: 4168-4175
|
[2] |
Blum L, Hoye J S. Mean spherical model for asymmetric electrolytes(2):Thermodynamic properties and the pair correlation function[J]. J. Phys. Chem., 1977, 81: 1311-1316
|
[3] |
Liu W B, Li Y G, Lu J F. A new equation of state for real aqueous ionic fluids based on electrolyte perturbation theory, mean spherical approximation and statistical associating fluid theory[J]. Fluid Phase Equilib., 1999, 158:595-606
|
[4] |
Liu Z P, Wang W C, Li Y G. An equation of state for electrolyte solutions by a combination of low-density expansion of non-primitive mean spherical approximation and statistical associating fluid theory[J]. Fluid Phase Equilib., 2005, 227: 147-156
|
[5] |
Liu Y, Li Z B, Mi J G, Zhong C L. Modeling of aqueous electrolyte solutions based on primitive and first-order mean spherical approximation[J]. Ind. Eng. Chem. Res., 2008, 47: 1695-1701
|
[6] |
Tan S P, Adidharma H, Radosz M. Statistical associating fluid theory coupled with restricted primitive model to represent aqueous strong electrolytes[J]. Ind. Eng. Chem. Res., 2005, 44: 4442-4452
|
[7] |
Ji X Y, Tan S P, Adidharma H, Radosz M. Statistical associating fluid theory coupled with restricted primitive model to represent aqueous strong electrolytes multiple salt solutions[J]. Ind. Eng. Chem. Res., 2005, 44: 7584-7590
|
[8] |
Ji X Y, Adidharma H. Ion-based SAFT2 to represent aqueous single-and multiple-salt solutions at 298.15K[J]. Ind. Eng. Chem. Res., 2006, 45: 7719-7728
|
[9] |
Tan S P, Ji X Y, Adidharma H, Radosz M. Statistical associating fluid theory coupled with restrictive primitive model extended to bivalent ions. SAFT2: 1. Single salt + water solutions[J]. J. Phys. Chem. B, 2006, 110: 16694-16699
|
[10] |
Zhao H, dos Ramos M C, McCabe C. Development of an equation of state for electrolyte solutions by combining the statistical associating fluid theory and the mean spherical approximation for the nonprimitive model[J]. J. Chem. Phys., 2007, 126: 244503-1-244503-14
|
[11] |
Herzog S, Gross J, Arlt W. Equation of state for aqueous electrolyte systems based on the semirestricted non-primitive mean spherical approximation[J]. Fluid Phase Equilib., 2010, 297: 23-33
|
[12] |
Gross J, Sadowski G. Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains[J]. Fluid Phase Equilib., 2000, 168: 183-199
|
[13] |
Cameretti L F, Sadowski G, Mollerup J M. Modeling of aqueous electrolyte solutions with perturber-chain statistical associated fluid theory[J]. Ind. Eng. Chem. Res., 2005, 44: 3355-3362
|
[14] |
Held C, Sadowski G. Modeling aqueous electrolyte solutions (2):Weak electrolytes[J]. Fluid Phase Equilib., 2009, 279:141-148
|
[15] |
Wang J F, Li C X, Shen C, Wang Z H. Towards understanding the effect of electrostatic interactions on the density of ionic liquids[J]. Fluid Phase Equilib., 2009, 279: 87-91
|
[16] |
Li J L, He H H, Peng C J, Liu H L, Hu Y. A new development of equation of state for square-well chain-like molecules with variable well width 1.1≤l≤3[J]. Fluid Phase Equilib., 2009, 276:57-68
|
[17] |
Li Jinlong(李进龙), Peng Changjun(彭昌军), Liu Honglai(刘洪来). Modeling vapor-liquid equilibrium of refrigerants using an equation of state for square-well chain fluid with variable range[J]. CIESC Journal(化工学报), 2009, 60(3):545-552
|
[18] |
He Qing(何清), Li Jinlong(李进龙), He Changchun(何昌春), Peng Changjun(彭昌军), Liu Honglai(刘洪来). Modeling of density and vapor-liquid equilibrium for alcohol-amine systems with equation of state[J]. CIESC Journal(化工学报), 2010, 61(4): 812-819
|
[19] |
Li J L, He C C, Peng C J, Liu H L, Hu Y, Paricaud P. Modeling of thermodynamic properties of aqueous ionic liquid solution with an equation of state for square well chain fluid with variable range[J]. Ind. Eng. Chem. Res., 2011, 50:7027-7040.
|
[20] |
Jin G, Donohue M D. An equation of state for electrolyte solutions(3): Aqueous solutions containing multiple salts[J]. Ind. Eng. Chem. Res., 1991, 30:240-248
|
[21] |
Ji X Y, Adidharma H. Ion-based statistical associating fluid theory (SAFT2) to represent aqueous single-salt solutions at temperatures and pressures up to 473.15 K and 1000 bar[J]. Ind. Eng. Chem. Res., 2007, 46: 4667-4677
|
[22] |
Hamer W J, Wu Y C. Osmotic coefficients and mean activity coefficients of univalent electrolytes in water at 25℃[J]. J. Phys. Chem. Ref. Data, 1972, 1: 1047-1099
|
[23] |
Held C, Cameretti L F, Sadowski G. Modeling aqueous electrolyte solutions(1): Fully dissociated electrolytes[J]. Fluid Phase Equilib., 2008, 270: 87-96
|
[24] |
Liu Guangqi(刘光启), Ma Lianxiang(马连湘), Liu Jie(刘杰).Handbook of Chemistry and Chemical Property Data(化学化工物性数据手册)[M]. Beijing: Chemical Industry Press, 2002:283-531
|
[25] |
Patil K R, Tripathi A D, Pathak G, Katti S S. Thermodynamic properties of aqueous electrolyte solutions vapor pressure of aqueous solutions of LiCl, LiBr, and LiI[J]. J. Chem. Eng. Data, 1990, 35: 166-168
|
[26] |
Apelblat A, Korin E. The vapour pressures of saturated aqueous solutions of sodium chloride, sodium bromide, sodium nitrate, sodium nitrite, potassium iodate, and rubidium chloride at temperatures from 227 K to 323 K[J]. J. Chem. Thermodynamics, 1998, 30: 59-71
|
[27] |
Patil K R, Tripathi A D, Pathak G, Katti S S. Thermodynamic properties of aqueous electrolyte solutions. Vapor pressure of aqueous solutions of NaBr, NaI, KCI, KBr, KI, RbCI, CsCI, CsBr, CsI, MgCl2, CaCl2, CaBr2, CaI2, SrCl2, SrBr2, SrI2, BaCl2, and BaBr2 [J]. J. Chem. Eng. Data, 1991, 36: 225-230
|