CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5449-5460.DOI: 10.11949/0438-1157.20221231
• Process system engineering • Previous Articles Next Articles
Huaixu LI(), Xiaoyan SUN(), Shaohui TAO, Li XIA, Shuguang XIANG
Received:
2022-09-09
Revised:
2022-10-17
Online:
2023-01-17
Published:
2022-12-05
Contact:
Xiaoyan SUN
通讯作者:
孙晓岩
作者简介:
李怀旭(1997—),男,硕士研究生,2438906689@qq.com
基金资助:
CLC Number:
Huaixu LI, Xiaoyan SUN, Shaohui TAO, Li XIA, Shuguang XIANG. Lumping gasoline with molecular properties and density peak clustering[J]. CIESC Journal, 2022, 73(12): 5449-5460.
李怀旭, 孙晓岩, 陶少辉, 夏力, 项曙光. 基于分子热力学性质和密度峰聚类的脱硫汽油集总[J]. 化工学报, 2022, 73(12): 5449-5460.
Add to citation manager EndNote|Ris|BibTeX
Molecular formula | Component | MW (28—162) | Tb /K (169—517) | Pc /MPa (2.11—5.69) | Tc/K (282—772) | (0.08—0.5) |
---|---|---|---|---|---|---|
C12H26 | dodecane | 170.34 | 489.47 | 1.82 | 658.00 | 0.57 |
C12H8S | dibenzothiophene | 184.26 | 604.61 | 3.86 | 897.00 | 0.40 |
C12H18 | 1,4-diisopropylbenzene | 162.27 | 483.65 | 2.45 | 689.00 | 0.39 |
Table 1 Partial properties of outlier components
Molecular formula | Component | MW (28—162) | Tb /K (169—517) | Pc /MPa (2.11—5.69) | Tc/K (282—772) | (0.08—0.5) |
---|---|---|---|---|---|---|
C12H26 | dodecane | 170.34 | 489.47 | 1.82 | 658.00 | 0.57 |
C12H8S | dibenzothiophene | 184.26 | 604.61 | 3.86 | 897.00 | 0.40 |
C12H18 | 1,4-diisopropylbenzene | 162.27 | 483.65 | 2.45 | 689.00 | 0.39 |
Center component/pseudo-components | MW | Tb/K | Pc/MPa | Tc/K | |
---|---|---|---|---|---|
cis-2-butene / PC1 | 56.11 / 57.90 | 276.87 / 275.98 | 4.21 / 4.24 | 435.50 / 440.22 | 0.20 / 0.16 |
cis-2-pentene / PC2 | 70.13 / 71.24 | 310.08 / 305.00 | 3.64 / 3.19 | 475.00 / 463.04 | 0.24 / 0.23 |
cis-3-hexene / PC3 | 84.16 / 87.78 | 339.60 / 347.87 | 3.17 / 3.27 | 509.00 / 526.40 | 0.28 / 0.25 |
3-methylheptane / PC4 | 114.23 / 114.17 | 392.08 / 391.78 | 2.55 / 2.68 | 563.60 / 571.37 | 0.37 / 0.33 |
2,2-dimethyloctane / PC5 | 142.28 /142.26 | 430.05 / 438.46 | 2.16 / 2.23 | 602.00 / 617.68 | 0.43 / 0.41 |
(1S,3S)-1,2,3-trimethylcyclopentane / PC6 | 112.22 / 117.14 | 390.35 / 418.68 | 2.90 / 3.16 | 579.82 / 630.26 | 0.28 / 0.30 |
1,4-dimethyl-2-ethylbenzene / PC7 | 134.22 / 134.15 | 459.98 / 467.90 | 2.88 / 3.38 | 663.00 / 700.67 | 0.41 / 0.31 |
2-hexene, 4-methyl-,(2Z)- / PC8 | 98.19 / 103.08 | 359.22 / 391.82 | 2.99 / 3.52 | 527.40 / 595.92 | 0.34 / 0.26 |
2,5-dimethylheptane / PC9 | 128.26 / 127.79 | 407.10 / 414.78 | 2.36 / 2.53 | 580.70 / 632.40 | 0.38 / 0.37 |
1-ethyl-2-propylbenzene / PC10 | 148.25 / 156.89 | 473.94 / 479.27 | 2.57 / 2.35 | 672.00 / 677.56 | 0.44 / 0.42 |
Table 2 Partial properties of center components and corresponding pseudo-components
Center component/pseudo-components | MW | Tb/K | Pc/MPa | Tc/K | |
---|---|---|---|---|---|
cis-2-butene / PC1 | 56.11 / 57.90 | 276.87 / 275.98 | 4.21 / 4.24 | 435.50 / 440.22 | 0.20 / 0.16 |
cis-2-pentene / PC2 | 70.13 / 71.24 | 310.08 / 305.00 | 3.64 / 3.19 | 475.00 / 463.04 | 0.24 / 0.23 |
cis-3-hexene / PC3 | 84.16 / 87.78 | 339.60 / 347.87 | 3.17 / 3.27 | 509.00 / 526.40 | 0.28 / 0.25 |
3-methylheptane / PC4 | 114.23 / 114.17 | 392.08 / 391.78 | 2.55 / 2.68 | 563.60 / 571.37 | 0.37 / 0.33 |
2,2-dimethyloctane / PC5 | 142.28 /142.26 | 430.05 / 438.46 | 2.16 / 2.23 | 602.00 / 617.68 | 0.43 / 0.41 |
(1S,3S)-1,2,3-trimethylcyclopentane / PC6 | 112.22 / 117.14 | 390.35 / 418.68 | 2.90 / 3.16 | 579.82 / 630.26 | 0.28 / 0.30 |
1,4-dimethyl-2-ethylbenzene / PC7 | 134.22 / 134.15 | 459.98 / 467.90 | 2.88 / 3.38 | 663.00 / 700.67 | 0.41 / 0.31 |
2-hexene, 4-methyl-,(2Z)- / PC8 | 98.19 / 103.08 | 359.22 / 391.82 | 2.99 / 3.52 | 527.40 / 595.92 | 0.34 / 0.26 |
2,5-dimethylheptane / PC9 | 128.26 / 127.79 | 407.10 / 414.78 | 2.36 / 2.53 | 580.70 / 632.40 | 0.38 / 0.37 |
1-ethyl-2-propylbenzene / PC10 | 148.25 / 156.89 | 473.94 / 479.27 | 2.57 / 2.35 | 672.00 / 677.56 | 0.44 / 0.42 |
Pseudo-component | Tb (Pseudo-component)/K | Tb (Center component)/K | Absolute error/K |
---|---|---|---|
PC1 | 275.98 | 276.87 | 0.89 |
PC2 | 305.00 | 310.10 | 5.10 |
PC3 | 347.87 | 339.60 | 8.27 |
PC4 | 391.78 | 392.08 | 0.30 |
PC5 | 438.46 | 430.05 | 8.41 |
PC6 | 418.68 | 390.35 | 28.33 |
PC7 | 467.90 | 459.98 | 7.92 |
PC8 | 391.82 | 359.22 | 32.60 |
PC9 | 414.78 | 408.00 | 6.78 |
PC10 | 479.27 | 473.94 | 5.33 |
Table 3 Boiling point gap between each pseudo-component and its center component
Pseudo-component | Tb (Pseudo-component)/K | Tb (Center component)/K | Absolute error/K |
---|---|---|---|
PC1 | 275.98 | 276.87 | 0.89 |
PC2 | 305.00 | 310.10 | 5.10 |
PC3 | 347.87 | 339.60 | 8.27 |
PC4 | 391.78 | 392.08 | 0.30 |
PC5 | 438.46 | 430.05 | 8.41 |
PC6 | 418.68 | 390.35 | 28.33 |
PC7 | 467.90 | 459.98 | 7.92 |
PC8 | 391.82 | 359.22 | 32.60 |
PC9 | 414.78 | 408.00 | 6.78 |
PC10 | 479.27 | 473.94 | 5.33 |
1 | Oliveira D F, Silva A C, Figueiredo W P, et al. Crude oil analysis by X-ray scattering technique[J]. X-Ray Spectrometry, 2019, 48(3): 195-201. |
2 | Abdulkadir I, Uba S, Salihu A A, et al. A rapid method of crude oil analysis using FT-IR spectroscopy[J]. Nigerian Journal of Basic and Applied Sciences, 2016, 24(1): 47. |
3 | 田松柏, 龙军, 李长秀, 等. 石油轻馏分的分子水平表征技术研究进展[J]. 石油学报(石油加工), 2017, 33(4): 595-604. |
Tian S B, Long J, Li C X, et al. Research advance on analytical techniques of the petroleum light fractions at the molecular level[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(4): 595-604. | |
4 | Shi Q, Zhang L Z, Xu C M, et al. Molecular characterization and modeling of petroleum refining process: frontiers and challenges[J]. Scientia Sinica Chimica, 2020, 50(2): 192-203. |
5 | Feng S, Cui C, Li K Y, et al. Molecular composition modelling of petroleum fractions based on a hybrid structural unit and bond-electron matrix (SU-BEM) framework[J]. Chemical Engineering Science, 2019, 201: 145-156. |
6 | Ren Y, Liao Z W, Sun J Y, et al. Molecular reconstruction: recent progress toward composition modeling of petroleum fractions[J]. Chemical Engineering Journal, 2019, 357: 761-775. |
7 | Ren Y, Liao Z W, Sun J Y, et al. Molecular reconstruction of naphtha via limited bulk properties: methods and comparisons[J]. Industrial & Engineering Chemistry Research, 2019, 58(40): 18742-18755. |
8 | 于博, 周祥, 郭锦标. 石油组分分子水平划分方法研究进展[J]. 计算机与应用化学, 2014, 31(5): 583-586. |
Yu B, Zhou X, Guo J B. Research progress of classification of crude oil components on molecular level[J]. Computers and Applied Chemistry, 2014, 31(5): 583-586. | |
9 | Weekman V W Jr. Model of catalytic cracking conversion in fixed, moving, and fluid-bed reactors[J]. Industrial & Engineering Chemistry Process Design and Development, 1968, 7(1): 90-95. |
10 | Montel F, Gouel P L. A new lumping scheme of analytical data for compositional studies[C]//SPE Annual Technical Conference and Exhibition. Houston, Texas: Society of Petroleum Engineers, 1984. |
11 | Leibovici C, Stenby E H, Knudsen K. A consistent procedure for pseudo-component delumping[J]. Fluid Phase Equilibria, 1996, 117(1/2): 225-232. |
12 | 封松. 石油分子层次组成及分离过程的模型构建[D]. 北京: 中国石油大学(北京), 2019. |
Feng S. Molecular modeling of composition and separation process of petroleum fractions[D]. Beijing: China University of Petroleum, 2019. | |
13 | 张霖宙, 李凯宇, 史权, 等. 一种石油分子层次分离过程模拟的方法及其装置: 108279251A[P]. 2018-07-13. |
Zhang L Z, Li K Y, Shi Q, et al. Method and device for simulating petroleum molecular level separation process: 108279251A[P]. 2018-07-13. | |
14 | Zheng L G. Improved K-means clustering algorithm based on dynamic clustering[J]. International Journal of Advanced Research in Big Data Management System, 2020, 4(1): 17-26. |
15 | 张明微, 吴海涛. 一种优化初始聚类中心的k-means算法[J]. 上海师范大学学报(自然科学版), 2016, 45(5): 599-603. |
Zhang M W, Wu H T. A k-means algorithm to optimize the initial cluster centers[J]. Journal of Shanghai Normal University (Natural Sciences), 2016, 45(5): 599-603. | |
16 | 秦美华, 朱红求, 李勇刚, 等. 基于STA-K均值聚类的电化学废水处理过程离子浓度软测量[J]. 化工学报, 2019, 70(9): 3458-3464. |
Qin M H, Zhu H Q, Li Y G, et al. Soft-sensor method for ion concentration of electrochemical wastewater treatment based on STA-K-means clustering[J]. CIESC Journal, 2019, 70(9): 3458-3464. | |
17 | Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. |
18 | Cheng Y Z. Mean shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799. |
19 | Fukunaga K, Hostetler L. The estimation of the gradient of a density function, with applications in pattern recognition[J]. IEEE Transactions on Information Theory, 1975, 21(1): 32-40. |
20 | Mehmood R, Zhang G Z, Bie R F, et al. Clustering by fast search and find of density peaks via heat diffusion[J]. Neurocomputing, 2016, 208: 210-217. |
21 | Lyu B C, Wu W H, Hu Z Q. A novel bidirectional clustering algorithm based on local density[J]. Scientific Reports, 2021, 11: 14214. |
22 | 陈叶旺, 申莲莲, 钟才明, 等. 密度峰值聚类算法综述[J]. 计算机研究与发展, 2020, 57(2): 378-394. |
Chen Y W, Shen L L, Zhong C M, et al. Survey on density peak clustering algorithm[J]. Journal of Computer Research and Development, 2020, 57(2): 378-394. | |
23 | Flores K G, Garza S E. Density peaks clustering with gap-based automatic center detection[J]. Knowledge-Based Systems, 2020, 206: 106350. |
24 | Ding J J, He X X, Yuan J Q, et al. Automatic clustering based on density peak detection using generalized extreme value distribution[J]. Soft Computing, 2018, 22(9): 2777-2796. |
25 | 毕荣山, 韩智慧, 陶少辉, 等. 基于热扩散核密度确定密度峰值法的历史工况识别[J]. 化工学报, 2022, 73(4): 1615-1622. |
Bi R S, Han Z H, Tao S H, et al. Recognizing historical operating conditions by determining the density peaks at kernel density estimation of heat diffusion[J]. CIESC Journal, 2022, 73(4): 1615-1622. | |
26 | Rodriguez M Z, Comin C H, Casanova D, et al. Clustering algorithms: a comparative approach[J]. PLoS One, 2019, 14(1): e0210236. |
27 | Sun L, Liu R N, Xu J C, et al. An adaptive density peaks clustering method with fisher linear discriminant[J]. IEEE Access, 2019, 7: 72936-72955. |
28 | Sehgal G, Garg K. Comparison of various clustering algorithms[J]. International Journal of Computer Science and Information Technologies, 2014, 5(3): 3074-3076. |
29 | Leibovici C F. A consistent procedure for the estimation of properties associated to lumped systems[J]. Fluid Phase Equilibria, 1993, 87(2): 189-197. |
30 | 张建忠, 张彪, 王仁安. 用改进的Riazi-Daubert法预测烃类临界性质[J]. 石油炼制与化工, 1998, 29(3): 55-56. |
Zhang J Z, Zhang B, Wang R A. Prediction of critical properties of hydrocarbons with modified riazi daubert method[J]. Petroleum Processing and Petrochemicals, 1998, 29(3): 55-56. | |
31 | 齐丽, 孙晓岩, 王建平, 等. 石油馏分偏心因子估算方法及评价[J]. 计算机与应用化学, 2017, 34(10): 774-779. |
Qi L, Sun X Y, Wang J P, et al. Evaluation of estimation method for acentric factor of petroleum fractions[J]. Computers and Applied Chemistry, 2017, 34(10): 774-779. | |
32 | 孙兰义. 化工过程模拟实训: Aspen Plus教程[M]. 2版. 北京: 化学工业出版社, 2017: 477. |
Sun L Y. Chemical Process Simulation Training: Aspen Plus Tutorial[M]. 2nd ed. Beijing: Chemical Industry Press, 2017: 477. | |
33 | Lv Y, Liu M D, Xiang Y. Fast searching density peak clustering algorithm based on shared nearest neighbor and adaptive clustering center[J]. Symmetry, 2020, 12(12): 2014. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[3] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[6] | Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures [J]. CIESC Journal, 2023, 74(5): 1847-1861. |
[7] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[8] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[9] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[10] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[11] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[12] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[13] | Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene [J]. CIESC Journal, 2023, 74(2): 653-665. |
[14] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
[15] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||