CIESC Journal ›› 2012, Vol. 63 ›› Issue (9): 2882-2886.DOI: 10.3969/j.issn.0438-1157.2012.09.033

Previous Articles     Next Articles

Chaotic generalized differential evolution and its application in Texaco gasification process

XU Wei1, GU Xingsheng2, SUN Youxian1   

  1. 1. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, Zhejiang, China;
    2. Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
  • Received:2012-06-14 Revised:2012-06-21 Online:2012-09-05 Published:2012-09-05
  • Supported by:

    supported by the National Basic Research Program of China(2012CB720500),the Key Program of National Natural Science Foundation of China(60736021)and the Specialized Research Fund for Doctoral Program of Higher Education of China(20100101110066).

混沌广义差分进化算法及其在Texaco气化过程中的应用

许伟1, 顾幸生2, 孙优贤1   

  1. 1. 浙江大学工业控制技术国家重点实验室, 浙江 杭州 310027;
    2. 华东理工大学化工过程先进控制和优化技术教育部重点实验室, 上海 200237
  • 通讯作者: 许伟
  • 作者简介:许伟(1985-),男,博士。
  • 基金资助:

    国家重点基础研究发展计划项目(2012CB720500);国家自然科学基金重点项目(60736021),高等学校博士学科点专项科研基金项目(20100101110066)。

Abstract: In the Texaco gasification process,the concentrations of syngas components are the key parameters to evaluate the gasification efficiency.A prediction model of the syngas components is designed for application in a real-world fertilizer plant.The model is a three-layer feedforward neural network,which adopts a chaotic differential evolution with generalized differentials(ChaoDEGD)as the learning algorithm.In ChaoDEGD,the generalized differential information between individuals is introduced into the mutation operation.Furthermore,chaotic mapping is brought on different individuals according to fitness ranking at each evolution phase,which preserves the population diversity so as to escape from the local minima.The experimental results indicate that ChaoDEGD is a competitive optimization algorithm and ChaoDEGD-NN based prediction model performs well in estimating the concentrations of CO,H2,CO2 in Texaco syngas.This would provide valuable instructions for the safety and stability of the Texaco gasification.

Key words: differential evolution, chaotic mapping, Texaco syngas

摘要: 在Texaco水煤浆气化工艺中,合成气中各组分的含量是衡量气化效率的关键参数。以某厂Texaco气化装置为研究背景,设计了一种合成气组分含量的预测模型。该模型选取三层前馈神经网络结构,并采用一种具有广义差分项的混沌差分进化算法(ChaoDEGD)作为模型参数的学习方法。ChaoDEGD算法在差分进化算法的变异操作中引入了广义的个体差异信息,并在不同进化时期,对不同适应度等级的个体施加混沌映射,保证了种群的多样性,帮助种群有效跳出了局部极小点。实验结果表明,基于ChaoDEGD的神经网络预测模型能够较好地估计合成气中CO、H2、CO2三类关键组分的含量,为Texaco水煤浆气化过程的安全稳定运行提供了有利指导。

关键词: 差分进化算法, 混沌映射, Texaco合成气

CLC Number: