CIESC Journal ›› 2014, Vol. 65 ›› Issue (5): 1553-1562.DOI: 10.3969/j.issn.0438-1157.2014.05.001
Previous Articles Next Articles
ZHU Xiang1, LÜ Wenjie2, HU Jun1, WANG Hualin2, LIU Honglai1
Received:
2014-01-07
Revised:
2014-03-20
Online:
2014-05-05
Published:
2014-05-05
Supported by:
supported by the National Basic Research Program of China (2013CB733501) and the National Natural Science Foundation of China (91334203, 21176066, 51125032).
朱祥1, 吕文杰2, 胡军1, 汪华林2, 刘洪来1
通讯作者:
刘洪来
基金资助:
国家重点基础研究发展计划项目(2013CB733501);国家自然科学基金项目(91334203,21176066,51125032)。
CLC Number:
ZHU Xiang, LÜ Wenjie, HU Jun, WANG Hualin, LIU Honglai. Progress of CO2 capture and separation by porous organic polymers[J]. CIESC Journal, 2014, 65(5): 1553-1562.
朱祥, 吕文杰, 胡军, 汪华林, 刘洪来. 有机多孔聚合物CO2捕集及分离性能的研究进展[J]. 化工学报, 2014, 65(5): 1553-1562.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.05.001
[1] | D'Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082 |
[2] | Dawson R, Cooper A I, Adams D J. Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers[J]. Polymer International, 2013, 62(3): 345-352 |
[3] | Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2011, 112(2): 724-781 |
[4] | Wang Q, Luo J, Zhong Z, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends[J]. Energy & Environmental Science, 2011, 4(1): 42-55 |
[5] | Yang J, Li J, Wang W, Li L, Li J. Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and beta[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17856-17864 |
[6] | Zhu X, Hillesheim P C, Mahurin S M, Wang C, Tian C, Brown S, Luo H, Veith G M, Han K S, Hagaman E W, Liu H, Dai S. Efficient CO2 capture by porous, nitrogen-doped carbonaceous adsorbents derived from task-specific ionic liquids[J]. ChemSusChem, 2012, 5(10): 1912-1917 |
[7] | Hicks J C, Drese J H, Fauth D J, Gray M L, Qi G, Jones C W. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly[J]. Journal of the American Chemical Society, 2008, 130(10): 2902-2903 |
[8] | Yang Q, Liu D, Zhong C, Li J R. Development of computational methodologies for metal-organic frameworks and their application in gas separations[J]. Chemical Reviews, 2013, 113(10): 8261-8323 |
[9] | Xiang Z, Cao D. Porous covalent-organic materials: synthesis, clean energy application and design[J]. Journal of Materials Chemistry A, 2013, 1(8): 2691-2718 |
[10] | Dawson R, Cooper A I, Adams D J. Nanoporous organic polymer networks[J]. Progress in Polymer Science, 2012, 37(4): 530-563 |
[11] | Côté A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170 |
[12] | Cooper A I. Conjugated microporous polymers[J]. Advanced Materials, 2009, 21(12): 1291-1295 |
[13] | Luo Y, Li B, Wang W, Wu K, Tan B. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials[J]. Advanced Materials, 2012, 24(42): 5703-5707 |
[14] | Du N, Park H B, Dal-Cin M M, Guiver M D. Advances in high permeability polymeric membrane materials for CO2 separations[J]. Energy & Environmental Science, 2012, 5(6): 7306-7322 |
[15] | Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons J M, Qiu S, Zhu G. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie International Edition, 2009, 48(50): 9457-9460 |
[16] | Yuan D, Lu W, Zhao D, Zhou H C. Highly stable porous polymer networks with exceptionally high gas-uptake capacities[J]. Advanced Materials, 2011, 23(32): 3723-3725 |
[17] | Lu W, Yuan D, Sculley J, Zhao D, Krishna R, Zhou H C. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure[J]. Journal of the American Chemical Society, 2011, 133(45): 18126-18129 |
[18] | Lu W, Verdegaal W M, Yu J, Balbuena P B, Jeong H K, Zhou H C. Building multiple adsorption sites in porous polymer networks for carbon capture applications[J]. Energy & Environmental Science, 2013, 6(12): 3559-3564 |
[19] | Lu W, Sculley J P, Yuan D, Krishna R, Wei Z, Zhou H C. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas[J]. Angewandte Chemie International Edition, 2012, 51(30): 7480-7484 |
[20] | Dawson R, Adams D J, Cooper A I. Chemical tuning of CO2 sorption in robust nanoporous organic polymers[J]. Chemical Science, 2011, 2(6): 1173-1177 |
[21] | Rabbani M G, El-Kaderi H M. Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake[J]. Chemistry of Materials, 2012, 24(8): 1511-1517 |
[22] | Patel H A, Hyun Je S, Park J, Chen D P, Jung Y, Yavuz C T, Coskun A. Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers[J]. Nature Communication, 2013, 4: 1357 |
[23] | Zhu X, Do-Thanh C L, Murdock C R, Nelson K M, Tian C, Brown S, Mahurin S M, Jenkins D M, Hu J, Zhao B, Liu H, Dai S. Efficient CO2 capture by a 3D porous polymer derived from Tröger's base[J]. ACS Macro Letters, 2013, 2(8): 660-663 |
[24] | Li B, Gong R, Wang W, Huang X, Zhang W, Li H, Hu C, Tan B. A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker[J]. Macromolecules, 2011, 44(8): 2410-2414 |
[25] | Dawson R, Stevens L A, Drage T C, Snape C E, Smith M W, Adams D J, Cooper A I. Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents[J]. Journal of the American Chemical Society, 2012, 134(26): 10741-10744 |
[26] | Dawson R, Ratvijitvech T, Corker M, Laybourn A, Khimyak Y Z, Cooper A I, Adams D J. Microporous copolymers for increased gas selectivity[J]. Polymer Chemistry, 2012, 3(8): 2034-2038 |
[27] | Zhao Y, Yao K X, Teng B, Zhang T, Han Y. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture[J]. Energy & Environmental Science, 2013, 6(12): 3684-3692 |
[28] | Mohanty P, Kull L D, Landskron K. Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide[J]. Nature Communication, 2011, 2: 401 |
[29] | Chen Q, Luo M, Hammershøj P, Zhou D, Han Y, Laursen B W, Yan C G, Han B H. Microporous polycarbazole with high specific surface area for gas storage and separation[J]. Journal of the American Chemical Society, 2012, 134(14): 6084-6087 |
[30] | Arab P, Rabbani M G, Sekizkardes A K, ?slamo?lu T, El-Kaderi H M. Copper(I)-catalyzed synthesis of nanoporous azo-linked polymers: impact of textural properties on gas storage and selective carbon dioxide capture[J]. Chemistry of Materials, 2014, 26(3): 1385-1392 |
[31] | Lu W, Sculley J P, Yuan D, Krishna R, Wei Z, Zhou H C. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas[J]. Angewandte Chemie International Edition, 2012, 51(30): 7480-7484 |
[32] | McKeown N B, Budd P M, Msayib K J, Ghanem B S, Kingston H J, Tattershall C E, Makhseed S, Reynolds K J, Fritsch D. Polymers of intrinsic microporosity(PIMs): bridging the void between microporous and polymeric materials[J]. Chemistry - A European Journal, 2005, 11(9): 2610-2620 |
[33] | Du N, Park H B, Robertson G P, Dal-Cin M M, Visser T, Scoles L, Guiver M D. Polymer nanosieve membranes for CO2-capture applications[J]. Nature Material, 2011, 10(5): 372-375 |
[34] | Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen J C, Bernardo P, Bazzarelli F, McKeown N B. An efficient polymer molecular sieve for membrane gas separations[J]. Science, 2013, 339(6117): 303-307 |
[35] | Zhu X, Tian C, Mahurin S M, Chai S H, Wang C, Brown S, Veith G M, Luo H, Liu H, Dai S. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation[J]. Journal of the American Chemical Society, 2012, 134(25): 10478- 10484 |
[36] | Kuhn P, Antonietti M, Thomas A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie International Edition, 2008, 47(18): 3450-3453 |
[37] | Zhu X, Tian C, Chai S, Nelson K, Han K S, Hagaman E W, Veith G M, Mahurin S M, Liu H, Dai S. New tricks for old molecules: development and application of porous N-doped, carbonaceous membranes for CO2 separation[J]. Advanced Materials, 2013, 25(30): 4152-4158 |
[1] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[2] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[3] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[4] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[5] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[6] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[7] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[8] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[9] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[10] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[11] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[12] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[13] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[14] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[15] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||