CIESC Journal ›› 2014, Vol. 65 ›› Issue (7): 2638-2644.DOI: 10.3969/j.issn.0438-1157.2014.07.023
Previous Articles Next Articles
XIANG Lan, WANG Jing
Received:
2014-03-25
Revised:
2014-04-08
Online:
2014-07-05
Published:
2014-07-05
Supported by:
supported by the National Natural Science Foundation of China (51174125, 51234003, 51374138), the National High Technology Research and Development Program of China (2012AA061602) and the National Key Technology Research and Development Program of China (2013BAC14B02).
向兰, 王靖
通讯作者:
向兰
基金资助:
国家自然科学基金项目(51174125,51234003,51374138);国家高技术研究发展计划项目(2012AA061602);国家科技支撑计划项目(2013BAC14B02)。
CLC Number:
XIANG Lan, WANG Jing. Progress in hydrothermal formation of dispersive nanoparticles and whiskers[J]. CIESC Journal, 2014, 65(7): 2638-2644.
向兰, 王靖. 水热法制备纳米分散颗粒和晶须材料进展[J]. 化工学报, 2014, 65(7): 2638-2644.
[1] | Adschiri T, Kanazawa K, Arai K. Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water[J]. Journal of the American Ceramic Society, 1992, 75(4): 1019-1022 |
[2] | Adschiri T, Hakuta Y, Sue K, et al. Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions[J]. Journal of Nanoparticle Research, 2001, 3(2/3): 227-235 |
[3] | Adschiri T, Lee Y W, Goto M, et al. Green materials synthesis with supercritical water[J]. Green Chemistry, 2011, 13(6): 1380-1390 |
[4] | Lu J, Minami K, Takami S, et al. Rapid and continuous synthesis of cobalt aluminate nanoparticles under subcritical hydrothermal conditions with in-situ surface modification[J]. Chemical Engineering Science, 2013, 85: 50-54 |
[5] | Xu C, Lee J, Teja A S. Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water[J]. The Journal of Supercritical Fluids, 2008, 44(1): 92-97 |
[6] | Chaudhry A A, Haque S, Kellici S, et al. Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis[J]. Chemical Communications, 2006 (21): 2286-2288 |
[7] | Aksomaityte G, Poliakoff M, Lester E. The production and formulation of silver nanoparticles using continuous hydrothermal synthesis[J]. Chemical Engineering Science, 2013, 85: 2-10 |
[8] | Dunne P W, Starkey C L, Gimeno-Fabra M, et al. The rapid size-and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials[J]. Nanoscale, 2014, 6:2406-2418 |
[9] | Lester E, Blood P, Denyer J, et al. Reaction engineering: the supercritical water hydrothermal synthesis of nano-particles[J]. The Journal of Supercritical Fluids, 2006, 37(2): 209-214 |
[10] | Toft L L, Aarup D F, Bremholm M, et al. Comparison of T-piece and concentric mixing systems for continuous flow synthesis of anatase nanoparticles in supercritical isopropanol/water[J]. Journal of Solid State Chemistry, 2009, 182(3): 491-495 |
[11] | Wu Q L, Xiang L, Jin Y. Influence of CaCl2 on the hydrothermal modification of Mg(OH)2[J]. Powder Technology, 2006, 162(2): 100-104 |
[12] | Wang Q, Xiang L, Zhang Y C, Jin Y. Simulation of the adsorption of CaCl2 on Mg(OH)2 planes[J].Journal of Materials Science, 2008, 43(7): 2387-2392 |
[13] | Xiang L, Gong Y L, Li J C, Wang Z W. Influence of hydrothermal modification on the properties of Ni/Al2O3 catalyst[J].Applied Surface Science, 2004, 239(1): 94-100 |
[14] | Li J C, Xiang L, Xu F, Wang Z W. Effect of hydrothermal treatment on the distribution of acidity of g-Al2O3 support[J].Applied Surface Science, 2006, 253(2): 766-770 |
[15] | Li J C, Xiang L, Xu F, Wang Z W. Influence of hydrothermal modification of γ-Al2O3 on properties of NiMo/g-Al2O3 catalyst[J]. Applied Surface Science, 2008, 254: 2077-2080 |
[16] | Xiang L, Deng X Y, Jin Y. Experimental study on synthesis of NiO nano-particles[J]. Scripta Materialia, 2002, 47(4): 219-224 |
[17] | Liu H B, Xiang L, Jin Y. Hydrothermal modification and characterization of Ni(OH)2 with high discharge capability[J]. Crystal Growth & Design, 2006, 6(1): 283-286 |
[18] | Yu S H, Yang J, Wu Y S, et al. Hydrothermal preparation and characterization of rod-like ultrafine powders of bismuth sulfide[J]. Materials Research Bulletin, 1998, 33(11): 1661-1666 |
[19] | Yu S H, Liu B, Mo M S, et al. General synthesis of single‐crystal tungstate nanorods/nanowires: a facile, low‐temperature solution approach[J]. Advanced Functional Materials, 2003, 13(8): 639-647 |
[20] | Cui X, Yu S H, Li L, et al. Selective synthesis and characterization of single‐crystal silver molybdate/tungstate nanowires by a hydrothermal process[J]. Chemistry-A European Journal, 2004, 10(1): 218-223 |
[21] | Zhu W C, Zhang X Y, Xiang L, Zhu S L. Hydrothermal formation of the head to head coalesced szaibelyite MgBO2(OH) nanowires[J]. Nanoscale Research Letters, 2009, 4(7): 724-731 |
[22] | Hou S C, Xiang L. Influence of activity of CaSO4·2H2O on hydrothermal formation of CaSO4·0.5H2O whiskers[J].Journal of Nanomaterials, 2013, DOI: 10.1155/2013/237828 |
[23] | Sun X T Xiang, L. Synthesis of magnesium oxysulfate whiskers in the presence of sodium dodecyl benzene sulfonate[J]. Crystal Research and Technology, 2008, 43(5): 479-482 |
[24] | Chen M J, Xiang L. Influence of Al2O3·xH2O crystallinities on the morphology of AlOOH whiskers[J]. Nano Biomed. Eng., 2010, 2(2): 121-125 |
[25] | Sun X T, Shi W T, Xiang L, Zhu W C.Controllable synthesis of magnesium oxysulfate nanowires with different morphologies[J]. Nanoscale Research Letters, 2008, 3(10): 386-389 |
[26] | Sun X T, Xiang L. Hydrothermal conversion of magnesium oxysulfate whiskers to magnesium hydroxide nanobelts[J].Materials Chemistry and Physics, 2008, 109: 381-385 |
[27] | He T B, Xiang L, Zhu S L. Hydrothermal preparation of boehmite nanorods by selective adsorption of sulfate[J]. Langmuir, 2008, 24(15): 8284-8289 |
[28] | He T B, Xiang L, Zhu W C, Zhu S L. Hydrothermal formation of γ-AlOOH nanorods in the presence of H2SO4[J].Materials Letters, 2008, 62(17/18): 2939-2942 |
[29] | He T B, Xiang L, Zhu S L. Different nanostructures of boehmite fabricated by hydrothermal process: effects of pH and anions[J].CrystEngComm, 2009, 11(7): 1338-1342 |
[30] | Zhu W C, Xiang L, Zhang Q, Zhang X Y, Hu L, Zhu S L. Morphology preservation and crystallinity improvement in the thermal conversion of the hydrothermal synthesized MgBO2(OH) nanowhiskers to Mg2B2O5 nanowhiskers[J]. Journal of Crystal Growth, 2008, 310: 4262-4267 |
[31] | Zhu W C, Zhang Q, Xiang L, Wei F, Piao X L, Zhu S L. Flux-assisted thermal conversion route to pore-free high crystallinity magnesium borate nanowhiskers at a relatively low temperature[J]. Crystal Growth & Design, 2008, 8(8): 2938-2945 |
[32] | Zhu W C, Li G D, Zhang Q, Xiang L, Zhu S L. Hydrothermal mass production of MgBO2(OH) nanowhiskers and subsequent thermal conversion to Mg2B2O5 nanorods for biaxially oriented polypropylene resins reinforcement[J]. Powder Technology, 2010, 203: 265-271 |
[33] | Zhu W C, Zhang Q, Xiang L, Zhu S L. Green co-precipitation byproduct-assisted thermal conversion route to sub- micron Mg2B2O5 whiskers[J].CrystEngComm, 2011, 11: 709-718 |
[34] | Zhu W C, Zhang Q, Xiang L, Zhu S L. Repair the pores and preserve the morphology: formation of high crystallinity 1D nanostructures via the thermal conversion route[J].Crystal Growth & Design, 2011, 11: 709-718 |
[1] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[2] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[3] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[4] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[5] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[6] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[7] | Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827. |
[8] | Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres [J]. CIESC Journal, 2022, 73(8): 3636-3646. |
[9] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[10] | Xueying NAI, Peng WU, Yuan CHENG, Jianfei XIAO, Xin LIU, Yaping DONG. Study on hydrothermal crystallization kinetics of magnesium oxysulfate nanowires [J]. CIESC Journal, 2022, 73(7): 3038-3044. |
[11] | Juan ZHAO, Mengcheng WU, Jinglei LEI, Lingjie LI. One-step hydrothermal method toward preparation of Ni3S2@Mo2S3 high-efficient catalyst for oxygen evolution reaction in water electrolysis [J]. CIESC Journal, 2022, 73(4): 1575-1584. |
[12] | Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435. |
[13] | Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids [J]. CIESC Journal, 2022, 73(3): 1136-1146. |
[14] | Yanshan WANG, Xiaochao ZHU, Yingjin SONG, Yihang LI. Study on anaerobic digestion pretreatment coupled with hydrothermal carbonization of grass [J]. CIESC Journal, 2022, 73(2): 904-913. |
[15] | Tao JU, Guohui LI, Fengxia GENG. One-step synthesis of two-dimensional Ti3C2 and its electrochemical performance [J]. CIESC Journal, 2022, 73(2): 951-959. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 863
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1017
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||