CIESC Journal ›› 2015, Vol. 66 ›› Issue (11): 4669-4675.DOI: 10.11949/j.issn.0438-1157.20150597

Previous Articles     Next Articles

Treatment of cracking catalyst wastewater with electrocoagulation-partial nitritation-Anammox process

WEI Qihang1, WANG Xiaolong1, LI Longwei1, LI Yaocai2, HU Weiyi2, GAO Dawen1   

  1. 1 State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China;
    2 Kunlun Engineering Corporation of China, Beijing 100037, China
  • Received:2015-05-12 Revised:2015-06-15 Online:2015-11-05 Published:2015-11-05
  • Supported by:

    supported by the Research Project of Kunlun Engineering Corporation of China (T2015-01).

电絮凝-半短程硝化-厌氧氨氧化组合工艺处理裂化催化剂废水

魏启航1, 王小龙1, 李龙伟1, 李耀彩2, 胡威夷2, 高大文1   

  1. 1 哈尔滨工业大学城市水资源与水环境国家重点实验室, 黑龙江 哈尔滨 150090;
    2 中国昆仑工程公司, 北京 100037
  • 通讯作者: 高大文
  • 基金资助:

    中国昆仑工程公司研究项目(T2015-01)。

Abstract:

Wastewater from cracking catalyst production line of petroleum refining industry is difficult to be treated with high density of salinity, high concentration of SS and ammonia, and low C/N. The research focused on the construction of electrocoagulation-partial nitritatiom-Anammox process, the performance and stability of the process towards cracking catalyst wastewater. The results showed that the system got strong stability to treat cracking catalyst wastewater. The effluent quality remained: turbidity< 30 NTU,NH4+-N< 10 mg·L-1,NO2--N< 3 mg·L-1, NO3-< 40 mg·L-1 and COD< 100 mg·L-1. By the control of aeration time according to the concentration of ammonium nitrogen, the partial nitritation can be achieved stably and theNO2-/NH4+-Nof effluent kept in 0.9 to 1.4 which can satisfied the need of the Anammox. The Anammox process can still show the Anammox effect markedly in the cracking catalyst wastewater with high salinity.

Key words: partial nitritation, Anammox, electrocoagulation, biological nitrogen removal, cracking catalyst wastewater, process control, experimental validation, numerical analysis

摘要:

裂化催化剂生产过程中产生的高盐度、高浊度、高氨氮、低C/N比废水难以处理。构建了电絮凝-半短程硝化-厌氧氨氧化组合工艺,考察了该组合工艺对实际裂化催化剂废水的处理效果以及处理稳定性。结果表明组合工艺处理裂化催化剂废水具有较好的稳定性,出水水质稳定在以下水平:浊度< 30 NTU,NH4+-N< 10 mg·L-1,NO2--N< 3 mg·L-1, NO3-< 40 mg·L-1,COD< 100 mg·L-1;通过进水氨氮浓度确定曝气时间的方式可以保证长期稳定的半短程硝化过程,出水NO2-/NH4+-N比值维持在0.9~1.4之间,满足厌氧氨氧化反应器的进水要求;同时在裂化催化剂废水的高盐度胁迫下厌氧氨氧化工艺能够表现出显著的厌氧氨氧化效果。

关键词: 半短程硝化, 厌氧氨氧化, 电絮凝, 生物脱氮, 裂化催化剂废水, 过程控制, 实验验证, 数值分析

CLC Number: