[1] |
Rowsell J L C, Yaghi O M. Strategies for hydrogen storage in metal-organic frameworks [J]. Angewandte Chemie International Edition, 2005, 44(30): 4670-4679.
|
[2] |
Getman R B, Bae Y S, Wilmer C E, et al. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks [J]. Chemical Reviews, 2011, 112(2): 703-723.
|
[3] |
El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, et al. Designed synthesis of 3D covalent organic frameworks [J]. Science, 2007, 316(5822): 268-272.
|
[4] |
Cote A P, El-Kaderi H M, Furukawa H, et al. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks [J]. Journal of the American Chemical Society, 2007, 129(43): 12914-12915.
|
[5] |
Furukawa H, Yaghi O M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications [J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883.
|
[6] |
Cao D, Lan J, Wang W, et al. Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials [J]. Angewandte Chemie, 2009, 121(26): 4824-4827.
|
[7] |
Assfour B, Seifert G. Hydrogen adsorption sites and energies in 2D and 3D covalent organic frameworks [J]. Chemical Physics Letters, 2010, 489(1): 86-91.
|
[8] |
Yang Q, Zhong C. Molecular simulation study of the stepped behaviors of gas adsorption in two-dimensional covalent organic frameworks [J]. Langmuir, 2009, 25(4): 2302-2308.
|
[9] |
Klontzas E, Tylianakis E, Froudakis G E. Hydrogen storage in 3D covalent organic frameworks. A multiscale theoretical investigation [J]. The Journal of Physical Chemistry C, 2008, 112(24): 9095-9098.
|
[10] |
Delley B. From molecules to solids with the DMol3 approach [J]. The Journal of Chemical Physics, 2000, 113: 7756-7764.
|
[11] |
Delley B. Hardness conserving semilocal pseudopotentials [J]. Physical Review B, 2002, 66: 155125-155134.
|
[12] |
Lee T B, Kim D, Jung D H, et al. Understanding the mechanism of hydrogen adsorption into metal organic frameworks [J]. Catalysis Today, 2007, 120(3): 330-335.
|
[13] |
Mueller T, Ceder G. A density functional theory study of hydrogen adsorption in MOF-5 [J]. The Journal of Physical Chemistry B, 2005, 109(38): 17974-17983.
|
[14] |
Liu Y, Liu J, Chang M, et al. Effect of functionalized linker on CO2 binding in zeolitic imidazolate frameworks: density functional theory study [J]. The Journal of Physical Chemistry C, 2012, 116(32): 16985-16991.
|
[15] |
Liu Y, Liu J, Chang M, et al. Theoretical studies of CO2 adsorption mechanism on linkers of metal-organic frameworks [J]. Fuel, 2012, 95: 521-527.
|
[16] |
Frost H, Düren T, Snurr R Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks [J]. The Journal of Physical Chemistry B, 2006, 110(19): 9565-9570.
|
[17] |
Düren T, Snurr R Q. Assessment of isoreticular metal-organic frameworks for adsorption separations: a molecular simulation study of methane/n-butane mixtures [J]. The Journal of Physical Chemistry B, 2004, 108(40): 15703-15708.
|