[1] |
Shibuichi S, Onda T, Satoh N, et al. Super water-repellent surfaces resulting from fractal structure [J]. Journal of Physical Chemistry, 1996, 100(50): 19512-19517.
|
[2] |
Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces [J]. Annals of Botany, 1997, 79(6): 667-677.
|
[3] |
Huang L, Liu Z, Liu Y, et al. Preparation and anti-frosting performance of super-hydrophobic surface based on copper foil [J]. International Journal of Thermal Sciences, 2011, 50(4): 432-439.
|
[4] |
Wu X M, Dai W T, Xu W F, Tang L M. Mesoscale investigation of frost formation on a cold surface [J]. Experimental Thermal and Fluid Science, 2007, 31: 1043-1048.
|
[5] |
Wu X M, Dai W T, Shan X F, Wang W C, Tang L M . Visual and theoretical analyses of the early stage of frost formation on cold surfaces [J]. Journal of Enhanced Heat Transfer, 2007, 14(3): 257-268.
|
[6] |
He M, Wang J, Li H, et al. Super-hydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation [J]. Soft Matter, 2011, 7(8): 3993-4000. .
|
[7] |
Jhee S, Lee K S, Kim W S. Effect of surface treatments on the frosting/defrosting behavior of a fin-tube heat exchanger [J]. International Journal of Refrigeration, 2002, 25: 1047-1053.
|
[8] |
Rykaczewski K. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces [J]. Langmuir, 2012, 28(20): 7720-7729.
|
[9] |
Rykaczewski K, Scott J H J, Rajauria S, et al. Three dimensional aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces [J]. Soft Matter, 2011, 7(19): 8749-8752.
|
[10] |
Enright R, Miljkovic N, Dou N, et al. Condensation on superhydrophobic copper oxide nanostructures [J]. Journal of Heat Transfer, 2013, 135(9): 091304.
|
[11] |
Miljkovic N, Enright R, Wang E N. Modeling and optimization of superhydrophobic condensation [J]. Journal of Heat Transfer, 2013, 135(11): 111004.
|
[12] |
Enright R, Miljkovic N, Alvarado J, et al. Dropwise condensation on micro- and nanostructured surfaces [J]. Nanoscale and Microscale Thermophysical Engineering, 2014, 18(3): 223-250.
|
[13] |
Miljkovic N, Enright R, Wang E N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces [J]. ACS Nano, 2012, 6(2): 1776-1785.
|
[14] |
Miljkovic N, Wang E N. Condensation heat transfer on superhydrophobic surfaces [J]. MRS Bulletin, 2013, 38(5): 397-406.
|
[15] |
Minkowycz W J, Sparrow E M. Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion [J]. International Journal of Heat and Mass Transfer, 1966, 9(10): 1125-1144.
|
[16] |
Grooten M H M, van der Geld C W M. Dropwise condensation from flowing air-steam mixtures: diffusion resistance assessed by controlled drainage [J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4507-4517.
|
[17] |
Caruso G, Di Maio D V. Heat and mass transfer analogy applied to condensation in the presence of noncondensable gases inside inclined tubes [J]. International Journal of Heat and Mass Transfer, 2014, 68: 401-414.
|
[18] |
Carey V P. Liquid-Vapor Phase-Change Phenomena[M]. New York: Taylor and Francis, 2008.
|
[19] |
Kim S, Kim K J. Dropwise condensation modeling suitable for superhydrophobic surfaces [J]. Journal of Heat Transfer, 2011, 133(8): 081502.
|
[20] |
Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Transactions of the Faraday Society, 1944, 40: 546-551.
|
[21] |
Young T. An essay on the cohesion of fluids [J]. Philosophical Transactions of the Royal Society of London, 1805: 65-87.
|
[22] |
Randolph A D.Theory of Particulate Processes[M]. 2nd ed. New York: Academic, 1988.
|