[1] |
NI L, DONG J K, YAO Y, et al. A review of heat pump systems for heating and cooling of buildings in China in the last decade[J]. Renewable Energy, 2015, 84:30-45.
|
[2] |
HEPBASLI A, BIYIK E, EKREN O, et al. A key review of wastewater source heat pump (WWSHP) systems[J]. Energy Conversion & Management, 2014, 88(88):700-722.
|
[3] |
孙德兴, 吴荣华. 设置有滚筒格栅的城市污水水力自清装置:200410043654.9[P]. 2006-10-25. SUN D X, WU R H. Urban sewage hydrolic self-cleaning device with roll-type grid:200410043654.9[P]. 2006-10-25.
|
[4] |
张吉礼, 马良栋. 污水源热泵空调系统污水侧取水、除污和换热技术研究进展[J]. 暖通空调, 2009, 39(7):41-47. ZHANG J L, MA L D. Study progress in intaking water, defouling and heat transfer in sewage water source heat pump air conditioning systems[J]. HVAC, 2009, 39(7):41-47.
|
[5] |
LIU Z B, MA L D, ZHANG J L. Application of a heat pump system using untreated urban sewage as a heat source[J]. Applied Thermal Engineering, 2014, 62(2):747-757.
|
[6] |
刘志斌, 马良栋, 张吉礼, 等. 半淹没式旋转孔板污水取水机水力特性数学模型及运行分析[J]. 暖通空调, 2014, 36(3):134-139. LUI Z B, MA L D, ZHANG J L, et al. Design and application of semi-submerged rotary orifice plate sewage-source heat pump intake machine[J]. HVAC, 2014, 36(3):134-139.
|
[7] |
赵庆国, 张明贤. 水力旋流器分离技术[M]. 北京:化学工业出版社, 2003. ZHAO Q G, ZHANG M X. Separation Technology of Hydrocylones[M]. Beijing:Chemical Industry Press, 2003.
|
[8] |
OATS W J, OZDEMIR O, NGUYEN A V. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation[J]. Minerals Engineering, 2010, 23(5):413-419.
|
[9] |
GALVEZ E D, CRUZ R, ROBLES P A, et al. Optimization of dewatering systems for mineral processing[J]. Minerals Engineering, 2014, 63(8):110-117.
|
[10] |
ORTEGA-RIVAS E, PEREZ-VEGA S B. Solid-liquid separations in the food industry:operating aspects and relevant applications[J]. Journal of Food & Nutrition Research, 2011, 50(2):86-105.
|
[11] |
BHARDWAJ P, BAGDI P, SEN A K. Microfluidic device based on a micro-hydrocyclone for particle-liquid separation[J]. Lab on A Chip, 2011, 11(23):4012-4021.
|
[12] |
倪龙, 姚杨, 田金乙, 等. 一种原生污水液固暂离旋流防阻装置:201310259792X[P]. 2015-06-19. NI L, YAO Y, TIAN J Y, et al. A novel sewage hydrocyclone with reflux function for foulant/water separation:201310259792X[P]. 2015-06-19.
|
[13] |
SVAROVSKY L. Solid-Liquid Separation[M]. 4th ed. Oxford:Butterworth-Heinemann, 2000.
|
[14] |
XU P, WU Z, MUJUMDAR A S, et al. Innovative hydrocyclone inlet designs to reduce erosion-induced wear in mineral dewatering processes[J]. Drying Technology, 2009, 27(2):201-211.
|
[15] |
YANG Q, WANG H L, WANG J G, et al. The coordinated relationship between vortex finder parameters and performance of hydrocyclones for separating light dispersed phase[J]. Separation and Purification Technology, 2011, 79(3):310-320.
|
[16] |
NENU R K T, HAYASE Y, YOSHIDA H, et al. Influence of inlet flow rate, pH, and beads mill operating condition on separation performance of sub-micron particles by electrical hydrocyclone[J]. Advanced Powder Technology, 2010, 21(3):246-255.
|
[17] |
XU Y X, SONG X F, SUN Z, et al. Numerical investigation of the effect of the ratio of the vortex-finder diameter to the spigot diameter on the steady state of the air core in a hydrocyclone[J]. Industrial & Engineering Chemistry Research, 2013, 52(15):5470-5478.
|
[18] |
AHMED A A, IBRAHEIM G A, DOHEIM M A. The influence of apex diameter on the pattern of solid/liquid ratio distribution within a hydrocyclone[J]. Journal of Chemical Technology and Biotechnology. Chemical Technology, 1985, 35(8):395-402.
|
[19] |
SILVA N K G, SILVA D O, VIEIRA L G M, et al. Effects of underflow diameter and vortex finder length on the performance of a newly designed filtering hydrocyclone[J]. Powder Technology, 2015, 286:305-310.
|
[20] |
KELSALL D F. A further study of the hydraulic cyclone[J]. Chemical Engineering Science, 1953, 2(6):254-272.
|