[1] |
王杰, 王茜. 热管科学及吸液芯研究进展回顾与展望[J]. 化工进展, 2015, 34(4):891-902. WANG J, WANG Q. Development and expectation of heat-pipe technology and wick research[J]. Chemical Industry and Engineering Progress, 2015, 34(4):891-902.
|
[2] |
CHEN X P, YE H Y, FAN X J, et al. A review of small heat pipes for electronics[J]. Applied Thermal Engineering, 2016, 96:1-17.
|
[3] |
王晨, 李艳霞, 刘中良, 等. 毛细结构对平板热管性能的影响[J]. 化工学报, 2014, 65(S1):359-363. WANG C, LI Y X, LIU Z L, et al. Influences of capillary structures on flat plat heat pipe performance[J]. CIESC Journal, 2014, 65(S1):359-363.
|
[4] |
郝俊娇, 潘日, 周刚, 等. 高热通量电子元件中热管散热技术的进展[J]. 化工进展, 2015, 34(5):1220-1224, 1231. HAO J J, PAN R, ZHOU G, et al. Development of heat pipe cooling technology in high heat flux electronic components[J]. Chemical Industry and Engineering Progress, 2015, 34(5):1220-1224, 1231.
|
[5] |
MARCINICHEN J B, OLIVIER J A, LAMAISON N, et al. Advances in electronics cooling[J]. Heat Transfer Engineering, 2013, 34(5/6):434-446.
|
[6] |
CHEN X P, YE H Y, FAN X J, et al. A review of small heat pipes for electronics[J]. Applied Thermal Engineering, 2016, 96:1-17.
|
[7] |
CAO Y, GAO M, BEAM J E, et al. Experiments and analyses of flat miniature heat pipes[J]. Journal of Thermophysics and Heat Transfer, 1997, 11(2):158-164.
|
[8] |
何艳丽, 李京龙, 孙福, 等. 扩散焊吸液芯结构对热管传热性能的影响[J]. 化工学报, 2014, 65(4):1229-1235. HE Y L, LI J L, SUN F, et al. Effect of diffusion bonded wick structure on thermal performance of heat pipe[J]. CIESC Journal, 2014, 65(4):1229-1235.
|
[9] |
YANG K S, LIN C C, SHYU J C, et al. Performance and two-phase flow pattern for micro flat heat pipes[J]. International Journal of Heat and Mass Transfer, 2014, 77:1115-1123.
|
[10] |
OSHMAN C, LI Q, LIEW L A, et al. Flat flexible polymer heat pipes[J]. Journal of Micromechanics and Microengineering, 2012, 23(1):015001.
|
[11] |
纪献兵, 徐进良, ABANDA A M, 等. 超轻多孔泡沫金属平板热管的传热性能研究[J]. 中国电机工程学报, 2013, 33(2):72-78, 14. JI X B, XU J L, ABANDA A M, et al. Investigation on heat transfer performance of flat heat pipes with ultra-light porous metal foam wicks[J]. Proceedings of the CSEE, 2013, 33(2):72-78, 14.
|
[12] |
LI Y, HE J B, HE H F, et al. Investigation of ultra-thin flattened heat pipes with sintered wick structure[J]. Applied Thermal Engineering, 2015, 86:106-118.
|
[13] |
OSHMAN C, SHI B, LI C, et al. The development of polymer-based flat heat pipes[J]. Journal of Microelectromechanical Systems, 2011, 20(2):410-417.
|
[14] |
王野, 纪献兵, 郑晓欢, 等. 多尺度复合毛细芯环路热管的传热特性[J]. 化工学报, 2015, 66(6):2055-2061. WANG Y, JI X B, ZHENG X H, et al. Heat transfer characteristics of loop heat pipe with modulated composite porous wick[J]. CIESC Journal, 2015, 66(6):2055-2061.
|
[15] |
LI J, LÜ L C. Experimental studies on a novel thin flat heat pipe heat spreader[J]. Applied Thermal Engineering, 2016, 93:139-146.
|
[16] |
WANG Y X, PETERSON G P. Analysis of wire-bonded micro heat pipe arrays[J]. Journal of Thermophysics and Heat Transfer, 2002, 16(3):346-355.
|
[17] |
林振玄, 马琦, 汪国山, 等. 一种铜丝结构的新型微槽道平板热管[J]. 化工学报, 2010, 61(1):27-31. LIN Z X, MA Q, WANG G S, et al. Thermal performance of a new copper wire-bonded flat heat pipe[J]. CIESC Journal, 2010, 61(1):27-31.
|
[18] |
PAIVA K V, MANTELLI M B H, SLONGO L K. Experimental testing of mini heat pipes under microgravity conditions aboard a suborbital rocket[J]. Aerospace Science and Technology, 2015, 45:367-375.
|
[19] |
JI X B, XU J L, LI H C, et al. The decoupling and synergy strategy to construct multiscales from nano to millimeter for heat pipe[J]. International Journal of Heat and Mass Transfer, 2016, 93:918-933.
|
[20] |
PAIVA K V, MANTELLI M B H, SLONGO L K. Thermal behavior analysis of wire mini heat pipe[J]. Journal of Heat Transfer, 2011, 133(12):121502.
|
[21] |
PAIVA K V, MANTELLI M B H. Theoretical thermal study of wire-plate mini heat pipes[J]. International Journal of Heat and Mass Transfer, 2015, 83:146-163.
|
[22] |
AOKI H, IKEDA M, KIMURA Y. Ultra thin heat pipe and its application[J]. Frontiers in Heat Pipes (FHP), 2012, 2(4):1-5.
|
[23] |
SEMENIC T, LIN Y Y, CATTON I. Thermophysical properties of biporous heat pipe evaporators[J]. Journal of Heat Transfer, 2008, 130(2):022602.
|
[24] |
郝婷婷, 马学虎, 兰忠, 等. 超疏水和超亲水表面对脉动热管性能的影响[J]. 工程热物理学报, 2015, 36(12):2670-2673. HAO T T, MA X H, LAN Z, et al. Experimental investigation of the effects of superhydrophobic and superhydrophilic surfaces on the pulsating heat pipe[J]. Journal of Engineering Thermophysics, 2015, 36(12):2670-2673.
|
[25] |
钱柏太, 沈自求. 控制表面氧化法制备超疏水CuO纳米花膜[J]. 无机材料学报, 2006, 21(3):747-752. QIAN B T, SHEN Z Q. Super-hydrophobic CuO nanoflowers by controlled surface oxidation on copper[J]. Journal of Inorganic Materials, 2006, 21(3):747-752.
|
[26] |
唐琼辉, 徐进良, 李银惠, 等. 一种新型微热管传热性能的实验研究[J]. 热能动力工程, 2006, 21(4):350-354. TANG Q H, XU J L, LI Y H. An experimental study of the heat transfer performance of innovative micro heat pipes[J]. Journal of Engineering for Thermal Energy and Power, 2006, 21(4):350-354.
|
[27] |
KLINE S J, MCCLINTOCK F A. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75(1):3-8.
|
[28] |
WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8):988-994.
|
[29] |
涂文斌, 王匀, 汤勇. 气液分离强化传热多孔结构毛细上升特征[J]. 化工学报, 2016, 67(7):2761-2766. TU W B, WANG Y, TANG Y. Capillary performance of metal porous media for heat transfer enhancement[J]. CIESC Journal, 2016, 67(7):2761-2766.
|
[30] |
MELENDEZ E, REYES R. The pool boiling heat transfer enhancement from experiments with binary mixtures and porous heating covers[J]. Experimental Thermal and Fluid Science, 2006, 30(3):185-192.
|
[31] |
李红传, 纪献兵, 郑晓欢, 等. 锥形毛细芯平板热管传热特性研究[J]. 机械工程学报, 2015, 51(24):132-138. LI H C, JI X B, ZHENG X H. Study on heat transfer properties of flat heat pipe with conical capillary wicks[J]. Journal of Mechanical Engineering, 2015, 51(24):132-138.
|
[32] |
屈健, 吴慧英. 微型硅基振荡热管传热特性[J]. 化工学报, 2011, 62(11):3046-3052. QU J, WU H Y. Thermal performance of micro pulsating heat pipe[J]. CIESC Journal, 2011, 62(11):3046-3052.
|
[33] |
WANG Y X. The theoretical analysis and experimental investigation of a flexible, lightweight radiator with micro heat pipe[D]. Texas:Texas A&M University, 2001.
|