[1] |
闫立龙, 王晓辉, 梁海晶, 等. UASB去除猪场废水有机物影响因素研究[J]. 安全与环境学报, 2013, 13(3):61-65. YAN L L, WANG X H, LIANG H J, et al. On the factors influencing COD removal in pigsty sewage by UASB[J]. Journal of Safety & Environment, 2013, 13(3):61-65.
|
[2] |
邢波, 章燕, 王志荣, 等. 水力剪切条件对IC工艺处理猪场废水的影响[J]. 中国沼气, 2012, 30(5):19-25. XING B, ZHANG Y, WANG Z R, et al. Effect of hydraulic shear on the IC process for piggery wastewater treatment[J]. China Biogas, 2012, 30(5):19-25.
|
[3] |
GULHANE M, PANDIT P, KHARDENAVIS A, et al. Study of microbial community plasticity for anaerobic digestion of vegetable waste in anaerobic baffled reactor[J]. Renewable Energy, 2017, 101:59-66.
|
[4] |
陈亚坤, 陈繁荣, 李翔宇. 部分硝化-厌氧氨氧化反应器处理养猪场废水的模拟试验研究[J]. 水处理技术, 2013, 39(9):104-108. CHEN Y K, CHEN F R, LI X Y. The research on the simulator of the partial nitrification-anammox reactor for treatment of piggery wastewater[J]. Technology of Water Treatment, 2013, 39(9):104-108.
|
[5] |
YENIGUN O, DEMIREL B. Ammonia inhibition in anaerobic digestion:a review[J]. Process Biochemistry, 2013, 48:901-911.
|
[6] |
DRENNAN M F, DISTEFANO T D. High solids co-digestion of food and landscape waste and the potential for ammonia toxicity[J]. Waste Management, 2014, 34:1289-1298.
|
[7] |
CHEN X, YAN W, SHENG K, et al. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste[J]. Bioresource Technology, 2014, 154:215-221.
|
[8] |
NIELSEN H B, ANGELIDAKI I. Strategies for optimizing recovery of the biogas process following ammonia inhibition[J]. Bioresource Technology, 2008, 99:7995-8001.
|
[9] |
HAO L P, BIZE A, CONTEAU D, et al. New insights into the key microbial phylotypes of anaerobic sludge digesters under different operational conditions[J]. Water Research, 2016, 102:158-169.
|
[10] |
RICO C, MONTES J A, RICO J L. Evaluation of different types of anaerobic seed sludge for the high rate anaerobic digestion of pig slurry in UASB reactors[J]. Bioresource Technology, 2017, 238:147-156.
|
[11] |
MA J Y, QUAN X C, SI X R, et al. Responses of anaerobic granule and ?occulent sludge to ceria nanoparticles and toxic mechanisms[J]. Bioresource Technology, 2013, 149:346-352.
|
[12] |
赵博玮, 李建政, 邓凯文, 等. 木质框架土壤渗滤系统处理养猪废水厌氧消化液的效能[J].化工学报, 2015, 66(6):2248-2255. ZHAO B W, LI J Z, DENG K W, et al. Efficiency of wood-chip-framework soil infiltration system in treating anaerobically digested swine wastewater[J]. CIESC Journal, 2015, 66(6):2248-2255.
|
[13] |
ZHANG W J, CAO B D, WANG D H, et al. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS)[J]. Water Research, 2016, 88:728-739.
|
[14] |
RAJAGOPAL R, MASSE D I, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143:632-641.
|
[15] |
高军, 陈莹莹, 李建. 氨氮浓度对剩余污泥高温固态厌氧消化的影响[J]. 现代农业科技, 2013, 3:252-253. GAO J, CHEN Y Y, LI J. Ammonia nitrogen concentration on the influence of high temperature solid anaerobic digestion sludge[J]. Modern Agricultural Science and Technology, 2013, 3:252-253.
|
[16] |
LENZ S, BOHM K, OTTNER R, et al. Determination of leachate compounds relevant for landfill aftercare using FT-IR spectroscopy[J]. Waste Management, 2016, 55:321-329.
|
[17] |
吴江, 陈波水, 方建华, 等. 氧化前后生物柴油的红外和紫外光谱分析[J]. 石油学报, 2014, 30(2):262-265. WU J, CHEN B S, FANG J H, et al. FT-IR and UV spectral analysis of biodiesel before and after oxidation[J]. Acta Petrolei Sinica, 2014, 30(2):262-265.
|
[18] |
王一兵, 吴卫红, 陈植成, 等. 傅里叶变换红外光谱法和紫外-可见谱线组法分析广西特产罗汉果[J]. 光谱实验室, 2009, 26(4):907-911. WANG Y B, WU W H, CHEN Z C, et al. Qualitative analysis of dry-fruit of Siraitia Grosvenorii by FTIR and UV-Vis spectrometry[J]. Chinese Journal of Spectroscopy Laboratory, 2009, 26(4):907-911.
|
[19] |
杨晓明, 张朝晖, 王亮, 等. MIEX和PAC对微污染水源水的水质净化效果比较[J].化工学报, 2016, 67(4):1505-1511. YANG X M, ZHANG C H, WANG L, et al. Comparison of purification of micropolluted source water by MIEX and PAC[J]. CIESC Journal, 2016, 67(4):1505-1511.
|
[20] |
ZHANG Z S, GUO L, WANG Y, et al. Degradation and transformation of extracellular polymeric substances (EPS) and dissolved organic matters (DOM) during two-stage anaerobic digestion with waste sludge[J]. International Journal of Hydrogen Energy, 2017, 42:9619-9629.
|
[21] |
SHI Y H, HUANG J H, ZENG G M, et al. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments:an overview[J]. Chemosphere, 2017, 180:396-411.
|
[22] |
TU X, SU B S, LI X M. Characteristics of extracellular fluorescent substances of aerobic granular sludge in pilot-scale sequencing batch reactor[J]. Journal of Central South University, 2010, 17:522-528.
|
[23] |
ZHU L, QI H, LV M, et al.Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124:455-459.
|
[24] |
CHEN J, GU B, LEBOEUF E J, et al. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions[J]. Chemosphere, 2002, 48:59-68.
|
[25] |
ZHU L, ZHOU J, LV M, et al. Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE[J]. Chemosphere, 2015, 121:26-32.
|
[26] |
BADIREDDY A R, CHELLAM S, GASSMAN P L, et al. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions[J]. Water Research, 2010, 44:4505-4516.
|
[27] |
MULLER T, WALTER B, WIRTZ A, et al. Ammonium toxicity in bacteria[J]. Current Microbiology, 2006, 52:400-406.
|
[28] |
刘芳, 张万钦, 吴树彪, 等. 厌氧发酵中挥发酸含量与碳酸氢盐碱度的滴定法修正[J]. 农业机械学报, 2013, 44(9):91-96. LIU F, ZHANG W Q, WU S B, et al. Titration method for total inorganic carbon and volatile fatty acids determination in anaerobic digestion[J]. Journal of Agricultural Machinery, 2013, 44(9):91-96.
|
[29] |
陈芳妮, 孙晓君, 魏金枝, 等. 磁性三乙烯四胺氧化石墨烯对Cu2+的吸附行为[J]. 化工学报, 2016, 67(5):1949-1956. CHEN F N, SUN X J, WEI J Z, et al. Adsorption behavior of magnetic triethylene tetramine-graphene oxide nanocomposite for Cu2+[J]. CIESC Journal, 2016, 67(5):1949-1956.
|
[30] |
MIAO L Z, WANG C, HOU J, et al. Response of wastewater bio?lm to CuO nanoparticle exposure in terms of extracellular polymeric substances and microbial community structure[J]. Science of the Total Environment, 2017, 579:588-597.
|