[1] |
JI C H, XUE S M, XU Z L. Novel swelling-resistant sodium alginate membrane branching modified by glycogen for highly aqueous ethanol solution pervaporation[J]. ACS Applied Materials & Interfaces, 2016, 8(40):27243-27253.
|
[2] |
SHAO P, HUANG R Y M. Polymeric membrane pervaporation[J]. Journal of Membrane Science, 2007, 287(2):162-179.
|
[3] |
WEE S L, TYE C T, BHATIA S. Membrane separation process-pervaporation through zeolite membrane[J]. Separation & Purification Technology, 2008, 63(3):500-516.
|
[4] |
CHAPMAN P D, OLIVEIRA T, LIVINGSTON A G, et al. Membranes for the dehydration of solvents by pervaporation[J]. Journal of Membrane Science, 2008, 318(1):5-37.
|
[5] |
CHENG X, PAN F, WANG M, et al. Hybrid membranes for pervaporation separations[J]. Journal of Membrane Science, 2017, 541:329-346.
|
[6] |
DAVIOU M C, AND P M H, ELICECHE A M. Design of membrane modules used in hybrid distillation/pervaporation systems[J]. Industrial & Engineering Chemistry Research, 2004, 43(13):3403-3412.
|
[7] |
LIM S Y, LIANG Y Y, WEIHS G A F, et al. A CFD study on the effect of membrane permeance on permeate flux enhancement generated by unsteady slip velocity[J]. Journal of Membrane Science, 2018, 556:138-145.
|
[8] |
LIU D, LIU G, MENG L, et al. Hollow fiber modules with ceramic-supported PDMS composite membranes for pervaporation recovery of bio-butanol[J]. Separation & Purification Technology, 2015, 146:24-32.
|
[9] |
DARVISHI A, AROUJALIAN A, MORAVEJI M K, et al. Computational fluid dynamic modeling of a pervaporation process for removal of styrene from petrochemical wastewater[J]. RSC Advances, 2016, 6(19):15327-15339.
|
[10] |
MOULIK S, NAZIA S, VANI B, et al. Pervaporation separation of acetic acid/water mixtures through sodium alginate/polyaniline polyion complex membrane[J]. Separation and Purification Technology, 2016, 170:30-39.
|
[11] |
MAFI A, RAISI A, AROUJALIAN A. Computational fluid dynamics modeling of mass transfer for aroma compounds recovery from aqueous solutions by hydrophobic pervaporation[J]. Journal of Food Engineering, 2013, 119(1):46-55.
|
[12] |
LIU S X, MING P, VANE L M. CFD simulation of effect of baffle on mass transfer in a slit-type pervaporation module[J]. Journal of Membrane Science, 2005, 265(1):124-136.
|
[13] |
DEAN W R. Fluid motion in a curved channel[J]. Proceedings of the Royal Society of London, 1928, 121(787):402-420.
|
[14] |
DEAN W R, HURST J M. Note on the motion of fluid in curved pipe[J]. Philosophical Magazine, 1959, 4(20):208-223.
|
[15] |
ZHUANG L W, DAI G C, XU Z L. Three-dimensional simulation of the time-dependent fluid flow and fouling behavior in an industrial hollow fiber membrane module[J]. AIChE Journal, 2018, 64(7):2655-2669.
|
[16] |
MOULIN P, ROUCH J C, SERRA C, et al. Mass transfer improvement by secondary flows:Dean vortices in coiled tubular membranes[J]. Journal of Membrane Science, 1996, 114(2):235-244.
|
[17] |
SCHNABEL S, MOULIN P, NGUYEN Q T, et al. Removal of volatile organic components (VOCs) from water by pervaporation:separation improvement by Dean vortices[J]. Journal of Membrane Science, 1998, 142(1):129-141.
|
[18] |
MENDEZ D L M, LEMAITRE C, CASTEL C, et al. Membrane contactors for process intensification of gas absorption into physical solvents:impact of dean vortices[J]. Journal of Membrane Science, 2017, 530:20-32.
|
[19] |
PERA TITUS M, FITE C, SEBASTIAN V, et al. Modeling pervaporation of ethanol/water mixtures within real zeolite NaA membranes[J]. Industrial & Engineering Chemistry Research, 2008, 47(9):3213-3224.
|
[20] |
YE P, ZHANG Y, WU H, et al. Mass transfer simulation on pervaporation dehydration of ethanol through hollow fiber NaA zeolite membranes[J]. AIChE Journal, 2016, 62(7):2468-2478.
|
[21] |
DELGADO P, SANZ M T, BELTRAN S. Pervaporation of the quaternary mixture present during the esterification of lactic acid with ethanol[J]. Journal of Membrane Science, 2009, 332(1-2):113-120.
|
[22] |
HENDERSON-SELLERS B. A new formula for latent heat of vaporization of water as a function of temperature[J]. Quarterly Journal of the Royal Meteorological Society, 1984, 110(466):1186-1190.
|
[23] |
ZHUANG L W, GUO H K, DAI G C, et al. Effect of the inlet manifold on the performance of a hollow fiber membrane module-a CFD study[J]. Journal of Membrane Science, 2017, 526:73-93.
|
[24] |
MULDER M. Basic Principles of Membrane Technology[M]. Switzerland:Springer, Dordrecht, 1996.
|
[25] |
YANG M C, CUSSLER E L. Designing hollow-fiber contactors[J]. AIChE Journal, 1986, 32(11):1910-1916.
|
[26] |
WICKRAMASINGHE S R, SEMMENS M J, CUSSLER E L. Mass transfer in various hollow fiber geometries[J]. Journal of Membrane Science, 1992, 69(3):235-250.
|
[27] |
LEVEQUE A. Les lois de la transmission de chaleur par convection[J]. Ann Mines, 1928, 13:201-299.
|
[28] |
MI L, HWANG S T. Correlation of concentration polarization and hydrodynamic parameters in hollow fiber modules[J]. Journal of Membrane Science, 1999, 159(1/2):143-165.
|
[29] |
LIU S X, PENG M, VANE L. CFD modeling of pervaporative mass transfer in the boundary layer[J]. Chemical Engineering Science, 2004, 59(24):5853-5857.
|
[30] |
SCHNABEL S, MOULIN P, NGUYEN Q T, et al. Removal of volatile organic components (VOCs) from water by pervaporation:separation improvement by Dean vortices[J]. Journal of Membrane Science, 1998, 142(1):129-141.
|