[1] |
REHME D. Laminarströmung in Stabbündeln[J]. Chemie Ingenieur Technik, 1971, 43(17):962-966.
|
[2] |
REHME K. Simple method of predicting friction factors of turbulent flow in non-circular channels[J]. International Journal of Heat & Mass Transfer, 1973, 16(5):933-950.
|
[3] |
CHENG S, TODREAS N. Hydrodynamic models and correlations for bare and wire-wrapped hexagonal rod bundles-bundle friction factors, subchannel friction factors and mixing parameters[J]. Nuclear Engineering & Design, 1986, 92(2):227-251.
|
[4] |
MAREK J, MAUBACH K, REHME K, et al. Heat transfer and pressure drop performance of rod bundles arranged in square arrays[J]. International Journal of Heat & Mass Transfer, 1973, 16(12):2215-2228.
|
[5] |
EIFLER W, NIJSING R. Experimental investigation of velocity distribution and flow resistance in a triangular array of parallel rods[J]. Nuclear Engineering & Design, 1967, 5(1):22-42.
|
[6] |
HOOPER J, WOOD D. Fully developed rod bundle flow over a large range of Reynolds number[J]. Nuclear Engineering & Design, 1984, 83(1):31-46.
|
[7] |
HOOPER J, REHME K. Large-scale structural effects in developed turbulent flow through closely spaced rod arrays[J]. Journal of Fluid Mechanics, 1984, 145(145):305-337.
|
[8] |
CHI Y, CHANG H, WANG K, et al. Pressure drop in dual-cooled annular and cylindrical solid fuel assemblies for pressurized water reactor[J]. Nuclear Engineering & Design, 2012, 250(3):287-293.
|
[9] |
YANG J. Note on turbulent-laminar transition for flow in triangular rod bundles[J]. Nuclear Science and Engineering, 1977, 62(3):579-582.
|
[10] |
ZARLING J. Laminar-flow pressure drop in symmetrical finite rod bundles[J]. Nuclear Science and Engineering, 1976, 61:2.
|
[11] |
LEE K. Analytical prediction of subchannel friction factor for infinite bare rod square and triangular arrays of low pitch to diameter ratio in turbulent flow[J]. Nuclear Engineering & Design, 1995, 157(1/2):197-203.
|
[12] |
SU J, FREIRE A. Analytical prediction of friction factors and Nusselt numbers of turbulent forced convection in rod bundles with smooth and rough surfaces[J]. Nuclear Engineering & Design, 2002, 217(1):111-127.
|
[13] |
BAE J, PARK J. Analytical prediction of turbulent friction factor for a rod bundle[J]. Annals of Nuclear Energy, 2011, 38(2/3):348-357.
|
[14] |
MÖLLER S. Single-phase turbulent mixing in rod bundles[J]. Experimental Thermal & Fluid Science, 1992, 5(1):26-33.
|
[15] |
YAN C, CAO X, YAN C, et al. Effects of rolling on resistance characteristics of single-phase flow in a 3×3 rod bundle[J]. Progress in Nuclear Energy, 2015, 78:231-239.
|
[16] |
ISHⅡ M, KATAOKA I. Scaling laws for thermal-hydraulic system under single phase and two-phase natural circulation[J]. Nuclear Engineering & Design, 1984, 81(3):411-425.
|
[17] |
ZVIRIN Y. A review of natural circulation loops in pressurized water reactors and other systems[J]. Nuclear Engineering & Design, 1981, 67(2):203-225.
|
[18] |
VIJAYAN P. Experimental observations on the general trends of the steady state and stability behaviour of single-phase natural circulation loops[J]. Nuclear Engineering & Design, 2002, 215(1):139-152.
|
[19] |
VIJAYAN P, SHARMA M, SAHA D, et al. Steady state and stability characteristics of single-phase natural circulation in a rectangular loop with different heater and cooler orientations[J]. Experimental Thermal & Fluid Science, 2007, 31(8):925-945.
|
[20] |
TAN S, SU G, GAO P, et al. Experimental and theoretical study on single-phase natural circulation flow and heat transfer under rolling motion condition[J]. Applied Thermal Engineering, 2009, 29(14):3160-3168.
|
[21] |
谭思超, 张红岩, 庞凤阁, 等. 摇摆运动下单相自然循环流动特点[J]. 核动力工程, 2005, (6):554-558. TAN S C, ZHANG H Y, PANG F G, et al. Characteristics of single-phase natural circulation under rolling[J]. Nuclear Power Engineering, 2005, (6):554-558.
|
[22] |
YAN B, YU L. Theoretical research for natural circulation operational characteristic of ship nuclear machinery under ocean conditions[J]. Annals of Nuclear Energy, 2009, 36(6):733-741.
|
[23] |
鄢炳火, 于雷, 张杨伟, 等. 海洋条件下核动力装置自然循环流动特性的无量纲分析[J]. 核动力工程, 2009, (1):36-39. YAN B H, YU L, ZHANG Y W, et al. Dimensionless analysis of natural circulation characteristics of nuclear installations under ocean condition[J]. Nuclear Power Engineering, 2009, (1):36-39.
|
[24] |
杨瑞昌, 刘涛, 钟勇, 等. 自然循环传热部件内单相水流动阻力的实验研究[J]. 核动力工程, 2003, (s2):75-78. YANG R C, LIU T, ZHONG Y, et al. Experimental study on friction of single phase liquid flow in a natural circulation system[J]. Nuclear Power Engineering, 2003, (s2):75-78.
|
[25] |
田春平, 阎昌琪, 王建军, 等. 倾斜对窄矩形通道内流动阻力特性影响[J]. 化工学报, 2016, 67(9):3633-3639. TIAN C P, YAN C Q, WANG J J, et al. Effect of inclination on flow resistance characteristic in narrow rectangular channel[J]. CIESC Journal, 2016, 67(9):3633-3639.
|
[26] |
TIAN C, YAN M, WANG J, et al. Experimental investigation of flow and heat transfer for natural circulation flow in an inclined narrow rectangular channel[J]. Progress in Nuclear Energy, 2017, 98:266-276.
|
[27] |
杨辉涛. 自然循环阻力特性研究[D]. 哈尔滨:哈尔滨工程大学, 2010. YANG H T. Study on flow resistance under natural circulation[J]. Harbin:Harbin Engineering University, 2010.
|
[28] |
KLINE S J, MCCLINTOCK F A. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75(1):3-8.
|
[29] |
田齐伟. 摇摆条件下棒束通道内流动阻力特性研究[D]. 哈尔滨:哈尔滨工程大学, 2015. TIAN Q W. Investigation on flow resistance in rod bundle under rolling condition[D]. Harbin:Harbin Engineering University, 2015.
|
[30] |
SADATOMI M, SATO Y, SARUWATARI S. Two-phase flow in vertical noncircular channels[J]. International Journal of Multiphase Flow, 1982, 8(6):641-655.
|