CIESC Journal ›› 2018, Vol. 69 ›› Issue (7): 3101-3113.DOI: 10.11949/j.issn.0438-1157.20171624

Previous Articles     Next Articles

A self-adaptive multi-output soft sensor modeling based on deep neural network

QIU Yu1, LIU Yiqi1,2, WU Jing1, HUANG Daoping1   

  1. 1 School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China;
    2 Shenyang Institute of Automation, Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, Guangdong, China
  • Received:2017-12-11 Revised:2018-01-29 Online:2018-07-05 Published:2018-07-05
  • Supported by:

    supported by the National Natural Science Foundation of China (61673181,61533002), the Natural Science Foundation of Guangdong Province (2015A030313225) and the Science and Technology Planning Project of Guangdong Province (2016A020221007).

基于深层神经网络的多输出自适应软测量建模

邱禹1, 刘乙奇1,2, 吴菁1, 黄道平1   

  1. 1 华南理工大学自动化科学与工程学院, 广东 广州 510640;
    2 广州中国科学院沈阳自动化研究所分所, 广东 广州 511458
  • 通讯作者: 黄道平
  • 基金资助:

    国家自然科学基金项目(61673181,61533002);广东省自然科学基金项目(2015A030313225);广东省科技计划项目(2016A020221007)。

Abstract:

In wastewater treatment process (WWTP), existence of several important but difficult-to-measure process variables hinders not only monitoring of the production process but also adjustment or optimization of process control strategies. Even though soft-sensor models are reasonably constructed, it will still suffer degradation problem and high maintenance cost in real-time operation. Additionally, selection of proper secondary variables directly affects subsequent modeling. Therefore, a self-adaptive multi-output soft sensor model based on deep neural network was proposed for simultaneous online prediction of multiple target variables in wastewater treatment. Deep neural network was constructed from a stacked auto-encoder, which had satisfactory performance of online prediction under extremely complex scenarios. In order to overcome degradation problem and select proper secondary variables, time difference modeling and VIP (variable importance in projection) methods were added. Finally, validation on a true WWTP process shows that the proposed soft-sensor model has good performance on multiple output prediction and satisfactory prediction on single target.

Key words: wastewater, soft sensor, neural network, multi-output, prediction, time difference modeling, VIP

摘要:

在污水处理运行过程中,多个重要的难测过程变量的存在,不仅妨碍了生产过程的监控,而且阻碍了过程控制策略的调整或优化。即使软测量模型得到合理的构建,在投入运行后仍然遭受性能的退化和同时带来的高昂的维护成本。此外,合适辅助变量的选取直接影响后续建模的效果。因此,文中提出了一种基于深层神经网络的多输出自适应软测量模型,用于污水处理过程中多个目标变量的同步在线预测。其中,深层神经网络基于一种栈式自编码而构建,在极端复杂场景下具有优异的在线预测性能;并在建模中引入时差建模和变量重要性投影(VIP)这两种算法,以应对性能退化问题和实现辅助变量的精选。最后,通过一个实际案例对所提出模型进行验证。结果表明,所提出的软测量模型不仅具有较好的多输出预测性能,且在单目标预测结果上也有不错的表现。

关键词: 污水, 软测量, 神经网络, 多输出, 预测, 时差建模, 变量重要性投影

CLC Number: