[1] |
CALAY R K, HOLDOACUTE A E, MAYMAN P, et al. Experimental simulation of runback ice[J]. Journal of Aircraft, 2015, 34(34):206-212.
|
[2] |
BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil and wing aerodynamics[J]. Progress in Aerospace Science, 2005, 41(5):323-362.
|
[3] |
KIND R J, POTAPCZUK M G, FEO A, et al. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Sciences, 1998, 34(5/6):257-345.
|
[4] |
杜雁霞, 李明, 桂业伟, 等. 飞机结冰热力学行为研究综述[J]. 航空学报, 2017, 38(2):25-36. DU Y X, LI M, GUI Y W, et al. Review of thermodynamic behaviors in aircraft icing process[J]. Acta Aeronautica Et Astronautica Sinica, 2017, 38(2):25-36.
|
[5] |
杜雁霞, 桂业伟, 柯鹏, 等. 飞机结冰冰型微结构特征的分形研究[J]. 航空动力学报, 2011, 26(5):997-1002. DU Y X, GUI Y W, KE P, et al. Investigation on the ice-type microstructure characteristics of aircraft icing based on the fractal theories[J]. Journal of Aerospace Power, 2011, 26(5):997-1002.
|
[6] |
MOORE E B, DE I L E, WELKE K, et al. Freezing, melting and structure of ice in a hydrophilic nanopore[J]. Physical Chemistry Chemical Physics, 2010, 12(16):4124-4134.
|
[7] |
GALISON P. An Accident of History[M]//Atmospheric Flight in the Twentieth Century. Netherlands:Springer, 2000:3-43.
|
[8] |
COBER S, RATVASKY T, ISAAC G. Assessment of aircraft icing conditions observed during AIRS[C]//AIAA Aerospace Sciences Meeting & Exhibit. 2013.
|
[9] |
HONSEK R, HABASHI W G, AUBÉ M S. Eulerian modeling of in-flight icing due to supercooled large droplets[J]. Journal of Aircraft, 2008, 45(4):1290-1296.
|
[10] |
LI H, WALDMAN R M, HU H. An experimental investigation on unsteady heat transfer and transient icing process upon impingement of water droplets[C]//AIAA Aerospace Sciences Meeting. AIAA Scitech, 2015.
|
[11] |
THOMAS S K, CASSONI R P, MACARTHUR C D. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft, 2012, 33(5):841-854.
|
[12] |
吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica Et Astronautica Sinica, 2015, 36(2):381-405.
|
[13] |
TIRUMALA R, BENARD N, MOREAU E, et al. Temperature characterization of dielectric barrier discharge actuators:influence of electrical and geometric parameters[J]. Journal of Physics D Applied Physics, 2014, 47(25):255203.
|
[14] |
ULLMER D, PESCHKE P, TERZIS A, et al. Impact of ns-DBD plasma actuation on the boundary layer transition using convective heat transfer measurements[J]. Journal of Physics D Applied Physics, 2015, 48(36):365203.
|
[15] |
梁华, 李应红, 贾敏, 等. 等离子体气动激励的能量转化过程分析[J]. 高电压技术, 2010, 36(12):3054-3058. LIANG H, LI Y H, JIA M, et al. Energy conversion process analysis of plasma aerodynamic actuation[J]. High Voltage Engineering, 2010, 36(12):3054-3058.
|
[16] |
CAI J S, TIAN Y, MENG X S, et al. An experimental study of icing control using DBD plasma actuator[J]. Experiments in Fluids, 2017, 58(8):102.
|
[17] |
BOINOVICH L, EMELYANENKO A M, KOROLEV V V, et al. Effect of wettability on sessile drop freezing:when superhydrophobicity stimulates an extreme freezing delay[J]. Langmuir, 2014, 30(6):1659-1668.
|
[18] |
XIAO X, CHENG Y T, SHELDON B W, et al. Condensed water on superhydrophobic carbon films[J]. Journal of Materials Research, 2008, 23(8):2174-2178.
|
[19] |
杨宝海, 王宏, 朱恂, 等. 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报, 2012, 63(10):3027-3033. YANG B H, WANG H, ZHU X, et al. Effect of velocity on behavior of droplet impacting superhydrophobic surface[J]. CIESC Journal, 2012, 63(10):3027-3033.
|
[20] |
SNOEIJER J H, BRUNET P. Pointy ice-drops:how water freezes into a singular shape[J]. American Journal of Physics, 2012, 80(9):764-771.
|
[21] |
SCHETNIKOV A, MATIUNIN V, CHERNOV V. Conical shape of frozen water droplets[J]. American Journal of Physics, 2015, 83(1):36-38.
|
[22] |
李栋, 王鑫, 高尚文, 等. 单液滴撞击超疏水冷表面的反弹及破碎行为[J]. 化工学报, 2017, 68(6):2473-2482. LI D, WANG X, GAO S W, et al. Rebounding and splashing behavior of single water droplet impacting on cold superhydrophobic surface[J]. CIESC Journal, 2017, 68(6):2473-2482.
|
[23] |
CHAUDHARY G, LI R. Freezing of water droplets on solid surfaces:an experimental and numerical study[J]. Experimental Thermal & Fluid Science, 2014, 57(3):86-93.
|
[24] |
UNFER T, BOEUF J. Modeling and comparison of sinusoidal and nanosecond pulsed surface dielectric barrier discharges for flow control[J]. Plasma Physics & Controlled Fusion, 2010, 52(12):124019.
|
[25] |
WU Y, ZHU Y F, CUI W, et al. Simulation of nanosecond pulsed DBD plasma actuation with different rise times[J]. Plasma Processes & Polymers, 2015, 12(7):642-654.
|
[26] |
赵光银, 李应红, 方浩百, 等. 锯齿形等离子体激励器纳秒脉冲放电及红外辐射温度特性[J]. 高电压技术, 2014, 40(7):2077-2083. ZHAO G Y, LI Y H, FANG H B, et al. Characteristic of discharge and infrared radiation temperature of saw-toothed plasma actuators under nanosecond-pulse voltage[J]. High Voltage Engineering, 2014, 40(7):2077-2083.
|
[27] |
姜慧, 邵涛, 车学科, 等. 纳秒脉冲表面放电等离子体影响因素的实验研究[J]. 高电压技术, 2012, 38(7):1704-1710. JIANG H, SHAO T, CHE X K, et al. Experimental study on the factors influencing nanosecond-pulsed surface discharge plasma[J]. High Voltage Engineering, 2012, 38(7):1704-1710.
|
[28] |
BENARD N, ZOUZOU N, CLAVERIE A, et al. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications[J]. Journal of Applied Physics, 2012, 111(3):47.
|
[29] |
XU S Y, CAI J S, LI J. Modeling and simulation of plasma gas flow driven by a single nanosecond-pulsed dielectric barrier discharge[J]. Physics of Plasmas, 2016, 23(10):1-84.
|
[30] |
ZHU Y F, WU Y, CUI W, et al. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge[J]. Journal of Physics D:Applied Physics, 2013, 46(35):355205.
|