CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 242-250.DOI: 10.11949/j.issn.0438-1157.20180663
• Energy and environmental engineering • Previous Articles Next Articles
Lulu PAN(
),Danjing WU,Weiping LIU(
)
Received:2018-06-19
Revised:2018-10-23
Online:2019-01-05
Published:2019-01-05
Contact:
Weiping LIU
通讯作者:
刘维平
作者简介:潘璐璐(1993—),女,硕士研究生,<email>1911083253@qq.com</email>|刘维平(1965—),男,教授,<email>weiping@just.edu.cn</email>
基金资助:CLC Number:
Lulu PAN, Danjing WU, Weiping LIU. Electrical performance of MFC-MEC coupling system and treatment of heavy metal wastewater containing cadmium[J]. CIESC Journal, 2019, 70(1): 242-250.
潘璐璐, 吴丹菁, 刘维平. MFC-MEC耦合系统产电性能及处理含镉重金属废水的研究[J]. 化工学报, 2019, 70(1): 242-250.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180663
| Volume/ml | U/mV | Rin/Ω | PAn/(mW·m-2) | ηCr/% | ηCd/% |
|---|---|---|---|---|---|
| 300 | 841 | 1789 | 547.6 | 91.3 | 40.6 |
| 500 | 934 | 4878 | 1815 | 83.7 | 58.0 |
| 700 | 1121 | 5168 | 2809 | 69.8 | 66.3 |
Table 1 Electrical performance of MFC and effect of MEC on wastewater treatment under different reactor volumes
| Volume/ml | U/mV | Rin/Ω | PAn/(mW·m-2) | ηCr/% | ηCd/% |
|---|---|---|---|---|---|
| 300 | 841 | 1789 | 547.6 | 91.3 | 40.6 |
| 500 | 934 | 4878 | 1815 | 83.7 | 58.0 |
| 700 | 1121 | 5168 | 2809 | 69.8 | 66.3 |
| MFC devices | U/mV | PAn/(mW·m-2) | Rin/Ω | ηCr/% | ηCu/% | ηCd/% |
|---|---|---|---|---|---|---|
| MFCCr | 934 | 1815 | 4878 | 83.6 | — | 58.0 |
| MFCCu | 607 | 1081.6 | 2547 | — | 98.3 | 89.5 |
| MFCCr(stack) | 554 | 2381.4 | 4323 | 86.5 | — | 69.3 |
| MFCCu(stack) | 955 | 1248.2 | 1956 | — | 98.4 | 69.3 |
Table 2 Influence of MFC stack on electrical performance and wastewatert reatment in MFC-MEC coupling system
| MFC devices | U/mV | PAn/(mW·m-2) | Rin/Ω | ηCr/% | ηCu/% | ηCd/% |
|---|---|---|---|---|---|---|
| MFCCr | 934 | 1815 | 4878 | 83.6 | — | 58.0 |
| MFCCu | 607 | 1081.6 | 2547 | — | 98.3 | 89.5 |
| MFCCr(stack) | 554 | 2381.4 | 4323 | 86.5 | — | 69.3 |
| MFCCu(stack) | 955 | 1248.2 | 1956 | — | 98.4 | 69.3 |
| Cathode materials | U/mV | ER/% | PAn/ (mW·m-2) | Rin/Ω | ηCu/% | ηCd/% |
|---|---|---|---|---|---|---|
| stainless steel | 687 | 83.7 | 8652.8 | 555 | 75.2 | 46.2 |
| titanium plate | 689 | 85 | 22278.4 | 1004 | 93.7 | 51.5 |
| carbon paper | 713 | 77.8 | 6350.4 | 1775 | 46.2 | 47.3 |
Table 3 Influence of cathode materials on coupling system
| Cathode materials | U/mV | ER/% | PAn/ (mW·m-2) | Rin/Ω | ηCu/% | ηCd/% |
|---|---|---|---|---|---|---|
| stainless steel | 687 | 83.7 | 8652.8 | 555 | 75.2 | 46.2 |
| titanium plate | 689 | 85 | 22278.4 | 1004 | 93.7 | 51.5 |
| carbon paper | 713 | 77.8 | 6350.4 | 1775 | 46.2 | 47.3 |
| pH | U/mV | ER/% | Rin/Ω | ηCd/% |
|---|---|---|---|---|
| 1 | 535 | 65.0 | 672 | 45.2 |
| 3 | 562 | 65.0 | 1263 | 82.4 |
| 5 | 607 | 84.7 | 1291 | 89.5 |
Table 4 Effect of MEC cathodic solution pH on electrical properties of coupling system and removal of cadmium ions
| pH | U/mV | ER/% | Rin/Ω | ηCd/% |
|---|---|---|---|---|
| 1 | 535 | 65.0 | 672 | 45.2 |
| 3 | 562 | 65.0 | 1263 | 82.4 |
| 5 | 607 | 84.7 | 1291 | 89.5 |
| 1 | KumbasarR A. Extraction of cadmium from solutions containing various heavy metal ions by Amberlite LA-2[J]. Journal of Industrial & Engineering Chemistry, 2010, 16(2): 207-213. |
| 2 | ChenH, ZhongC, BerkhouseH, et al. Removal of cadmium by bioflocculant produced by Stenotrophomonas maltophilia using phenol-containing wastewater[J]. Chemosphere, 2016, 155: 163-169. |
| 3 | BhatluriK K, MannaM S, GhoshalA K, et al. Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition[J]. Electrochimica Acta, 2017, 229: 1-7. |
| 4 | AwualM R, KhraishehM, AlharthiN H, et al. Efficient detection and adsorption of cadmium(Ⅱ) ions using innovative nano-composite materials[J]. Chemical Engineering Journal, 2018, 343: 118-127. |
| 5 | YaacoubiH, ZidaniO, MouflihM, et al. Removal of cadmium from water using natural phosphate as adsorbent [J]. Procedia Engineering, 2014, 83: 386-393. |
| 6 | HokkanenS, RepoE, SuopajärviT, et al. Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose[J]. Cellulose, 2014, 21(3): 1471-1487. |
| 7 | HadavifarM, BahramifarN, YounesiH, et al. Removal of mercury(II) and cadmium(II) ions from synthetic wastewater by a newly synthesized amino and thiolated multi-walled carbon nanotubes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67: 397-405. |
| 8 | HeJ, LiY, WangC, et al. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers[J]. Applied Surface Science, 2017, 426: 29-39. |
| 9 | BhuniaP, ChatterjeeS, RudraP, et al. Chelating polyacrylonitrile beads for removal of lead and cadmium from wastewater[J]. Separation & Purification Technology, 2017, 193: 202-213. |
| 10 | ArendsJ B A, VerstraeteW. 100 years of microbial electricity production: three concepts for the future[J]. Microbial Biotechnology, 2012, 5(3): 333-346. |
| 11 | WuX, ZhuX, SongT, et al. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell[J]. Bioresource Technology, 2015, 180: 185-191. |
| 12 | GangadharanP, NambiI M. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2015, 71(3): 353-8. |
| 13 | QinB, LuoH, LiuG, et al. Nickel ion removal from wastewater using the microbial electrolysis cell[J]. Bioresour. Technol., 2012, 121(2): 458-461. |
| 14 | LuoH P, LiuG L, ZhangR D, et al. Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell[J]. Journal of Hazardous Materials, 2014, 270(7): 153-159. |
| 15 | CaiW F, FangX W, XuM X, et al. Sequential recovery of copper and nickel from wastewater without net energy input[J]. Water Science & Technology, 2015, 71(5): 754-760. |
| 16 | ChoiC, HuN X, LimB S. Cadmium recovery by coupling double microbial fuel cells[J]. Bioresource Technology, 2014, 170: 361-369. |
| 17 | ShenJ Y, SunY L, HuangL P, et al. Microbial electrolysis cells with bio-cathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal[J]. Frontiers of Environmental Science & Engineering, 2015, 9(6): 1084- 1095. |
| 18 | ZhangY, YuL, WuD, et al. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells[J]. Journal of Power Sources, 2015, 273: 1103-1113. |
| 19 | LuoH P, QinB Y, ZhangG L, et al. Selective recovery of and from wastewater using bioelectrochemical system[J]. Frontiers of Environmental Science & Engineering, 2015, 9(30): 522-527. |
| 20 | 孙彩玉, 邸雪颖, 秦必达, 等. 微生物燃料电池耦合处理重金属-有机废水性能研究[J]. 太阳能学报, 2015, 36(8): 1921-1926. |
| SunC Y, DiX Y, QinB D, et al. Performance of microbial fuel cell coupled processing heavy metal wasterwater-organic wastewater[J]. Acta Energiae Solaris Sinica, 2015, 36(8): 1921-1926. | |
| 21 | 梁鹏, 范明志, 曹效鑫, 等. 微生物燃料电池表观内阻的构成和测量[J]. 环境科学, 2007, 28(8): 1894-1898. |
| LiangP, FanM Z, CaoX X, et al. Composition and measurement of the apparent internal resistance in microbial fuel cell[J]. Environmental Science, 2007, 28(8): 1894-1898. | |
| 22 | 谢静怡, 李永峰, 郑阳. 环境生物电化学原理与应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014: 36-41. |
| XieJ Y, LiY F, ZhengY. Principles and Applications of Environmental Bioelectrochemistry[M]. Harbin: Harbin Institute of Technology Press, 2014: 36-41. | |
| 23 | 徐功娣, 李旭峰, 张永娟. 微生物燃料电池与应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2012: 150-152. |
| XuG D, LiX F, ZhangY J. Microbial Fuel Cell and Application[M]. Harbin: Harbin Institute of Technology Press, 2012: 150-152. | |
| 24 | 许丹, 肖恩荣, 徐栋, 等. 微生物燃料电池与人工湿地耦合系统研究进展[J]. 化工学报, 2015, 66(7): 2370-2376. |
| XuD, XiaoE R, XuD, et al. Embedding microbial fuel cell into constructed wetland systems for electricity production and wastewater treatment: state-of-the-art[J]. CIESC Journal, 2015, 66(7): 2370-2376. | |
| 25 | 孔晓英, 李连华, 李颖, 等. 葡萄糖浓度对微生物燃料电池产电性能的影响[J]. 太阳能学报, 2013, 34(2): 349-352. |
| KongX Y, LiL H, LiY, et al. Effect of glucose concentration on power generation performance of microbial fuel cells[J]. Acta Energiae Solaris Sinica, 2013, 34(2): 349-352. | |
| 26 | ZhouM, ChiM, LuoJ, et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4427-4435. |
| 27 | 王辉, 李蕾, 曹羡, 等. 土壤微生物燃料电池在不同条件下的产电性能及微生物群落结构分析[J]. 东南大学学报(自然科学版), 2017, 47(6): 1141-1147. |
| WangH, LiL, CaoX, et al. Performance of soil microbial fuel cells under different conditions and analysis on associated microbial communities[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(6): 1141-1147. | |
| 28 | MargariaV, TommasiT, PentassugliaS, et al. Effects of pH variations on anodic marine consortia in a dual chamber microbial fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(3): 1820-1829. |
| 29 | ManiP, KeshavarzT, ChandraT S, et al. Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode: influence of mitigating pH changes in the cathode chamber[J]. Enzyme & Microbial Technology, 2017, 96: 170-176. |
| 30 | 张培远, 刘中良, 侯俊先. 外阻对微生物燃料电池性能的影响[J].工程热物理学报, 2012, 33(10): 1777-1780. |
| ZhangP Y, LiuZ L, HouJ X. Influence of external resistance on the performance of microbial fuel cells[J]. Journal of Engineering Thermophysics, 2012, 33(10): 1777-1780. | |
| 31 | ColantonioN, KimY. Cadmium (Ⅱ) removal mechanisms in microbial electrolysis cells[J]. Journal of Hazardous Materials, 2016, 311: 134-141. |
| 32 | AeltermanP, RabaeyK, PhamH T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells [J]. Environmental Science & Technology, 2006, 40(10): 3388-3394. |
| 33 | GurungA, OhS E. The improvement of power output from stacked microbial fuel cells (MFCs)[J]. Energy Sources, 2012, 34(17): 1569-1576. |
| 34 | WuD, PanY, HuangL P, et al. Comparison of Co(II) reduction on three different cathodes of microbial electrolysis cells driven by Cu(II)-reduced microbial fuel cells under various cathode volume conditions[J]. Chemical Engineering Journal, 2015, 266: 121-132. |
| 35 | 李辉, 方正. 驯化期外电路对微生物燃料电池的影响[J]. 华中科技大学学报(自然科学版), 2013, 41(11): 32-36. |
| LiH, FangZ. Effect of external circuits on microbial fuel cell during acclimated period[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(11): 32-36. | |
| 36 | ZhuangL, ZhouS, LiY, et al. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode[J]. Bioresource Technology, 2010, 101(10): 3514-3519. |
| 37 | 张勇. 堆砌式自驱动MFC-MEC系统回收多金属[D]. 大连: 大连理工大学, 2014. |
| ZhangY. Multiple metals recovery in stackable self-driven MFC-MEC systems[D]. Dalian: Dalian University of Technology, 2014. |
| [1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
| [2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
| [3] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
| [4] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
| [5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
| [6] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
| [7] | Wenxiang NI, Jing ZHAO, Bo LI, Xiaolin WEI, Dongyin WU, Di LIU, Qiang WANG. Study on waste heat boiler ash deposition characteristics in sensible heat recovery process of converter gas [J]. CIESC Journal, 2023, 74(8): 3485-3493. |
| [8] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
| [9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
| [10] | Yanmei ZHANG, Tao YUAN, Jiang LI, Yajie LIU, Zhanxue SUN. Study on the construction of high-efficient SRB mixed microflora and its performance under acid stress [J]. CIESC Journal, 2023, 74(6): 2599-2610. |
| [11] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
| [12] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
| [13] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
| [14] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
| [15] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||