CIESC Journal ›› 2019, Vol. 70 ›› Issue (11): 4143-4152.DOI: 10.11949/0438-1157.20190931
• Thermodynamics • Previous Articles Next Articles
Received:
2019-08-13
Revised:
2019-09-16
Online:
2019-11-05
Published:
2019-11-05
Contact:
Zhan DU
通讯作者:
杜占
基金资助:
CLC Number:
Zhan DU. Thermodynamic studies on behavior of newly formed metallic iron on surface of particles[J]. CIESC Journal, 2019, 70(11): 4143-4152.
杜占. 颗粒表面金属铁析出规律的热力学研究[J]. 化工学报, 2019, 70(11): 4143-4152.
Add to citation manager EndNote|Ris|BibTeX
Composition | Content /%(mass) |
---|---|
TFe | 61.13 |
FeO | 25.43 |
CaO | 0.83 |
MgO | 4.32 |
Al2O3 | 0.84 |
SiO2 | 6.02 |
TiO2 | 0.11 |
Table 1 Chemical composition of Chilean iron ore
Composition | Content /%(mass) |
---|---|
TFe | 61.13 |
FeO | 25.43 |
CaO | 0.83 |
MgO | 4.32 |
Al2O3 | 0.84 |
SiO2 | 6.02 |
TiO2 | 0.11 |
Fig.2 Experimental apparatus used for fluidized bed reduction1—gas cylinder; 2—shutoff valve; 3—mass flowmeter; 4—fluidized bed; 5—electric resistance furnace; 6—thermocouple; 7—temperature controller; 8—pressure sensor; 9—computer
CO2 /(CO+CO2)/%(vol) | ΔG/ (kJ/mol) |
---|---|
10 | -33.8 |
20 | -18.3 |
30 | -8.7 |
CO2 Fe/oxide eq=41.1%(vol) | 0 |
Table 2 Thermodynamic driving forces in CO-CO2 mixtures at 800℃
CO2 /(CO+CO2)/%(vol) | ΔG/ (kJ/mol) |
---|---|
10 | -33.8 |
20 | -18.3 |
30 | -8.7 |
CO2 Fe/oxide eq=41.1%(vol) | 0 |
1 | GransdenJ F, SheasbyJ S. Sticking of iron ore during reduction by hydrogen in a fluidized bed[J]. Can. Metall. Quart., 1974, 13(4): 649-657. |
2 | HayashiS, SayamaS, IguchiY. Relation between sulfur pressure and sticking of fine iron ores in fluidized bed reduction[J]. ISIJ Int., 1990, 30(9): 722-730. |
3 | HayashiS, IguchiY. Factors affecting the sticking of fine iron ores during fluidized bed reduction[J]. ISIJ Int., 1992, 32(9): 962-971. |
4 | HayashiS, SawaiS, IguchiY. Influence of coating oxide and sulfur pressure on sticking during fluidized bed reduction of iron ores[J]. ISIJ Int., 1993, 33(10): 1078-1087. |
5 | ManzooriA R, AgarwalP K. Agglomeration and defluidization under simulated circulating fluidized-bed combustion conditions[J]. Fuel, 1994, 73(4): 563-568. |
6 | MikamiT, KamiyaH, HorioM. The mechanism of defluidization of iron particles in a fluidized bed[J]. Powder Technol., 1996, 89: 231-238. |
7 | SevilleJ P K, Silomon-PflugH, KnightP C. Modeling of sintering in high temperature gas fluidization[J]. Powder Technol., 1998, 97: 160-169. |
8 | KomatinaM, GudenauH W. The sticking problem during direct reduction of fine iron ore in fluidized bed[J]. Metalurgija, 2004, 10(204): 309-328. |
9 | LinC, PengT, WangW. Effect of particle size distribution on agglomeration/defluidization during fluidized bed combustion[J]. Powder Technol., 2011, 207: 290-295. |
10 | ShaoJ, GuoZ, TangH. Influence of temperature on sticking behavior of iron powder in fluidized bed[J]. ISIJ Int., 2011, 51(8): 1290-1295. |
11 | ZhongY, WangZ, GuoZ, et al. Defluidization behavior of iron powders at elevated temperature: influence of fluidizing gas and particle adhesion[J]. Powder Technol., 2012, 230: 225-231. |
12 | ZhuQ, WuR, LiH. Direct reduction of hematite powders in a fluidized bed reactor[J]. Particuology, 2013, 11(3): 294-300. |
13 | ZhongY, WangZ, GuoZ, TangQ. Prediction of defluidization behavior of iron powder in a fluidized bed at elevated temperatures: theoretical model and experimental verification[J]. Powder Technol., 2013, 249: 175-180. |
14 | LeiC, ZhuQ, LiH. Experimental and theoretical study on the fluidization behaviors of iron powder at high temperature[J]. Chem. Eng. Sci., 2014, 118: 59-69. |
15 | SinghM, BjörkmanB. Effect of processing parameters on the swelling behavior of cement-bonded briquettes[J]. ISIJ Int., 2004, 44(1): 59-68. |
16 | BarustanM I A, JungS M. Morphology of iron and agglomeration behavior during reduction of iron oxide fines[J]. Metals and Materials International, 2019, 25(4): 1083-1097. |
17 | SchillerM. Die Mikromorphologie der eisenphase als fogle der reduktion von eisenoxiden [D]. Germany: RWTH Aachen, 1987. |
18 | WangH, SohnH. Effects of reducing gas on swelling and iron whisker formation during the reduction of iron oxide compact[J]. Steel Res. Int., 2012, 83(9): 903-909. |
19 | 邵剑华, 郭占成, 唐惠庆. 流态化还原铁精粉黏结过程试验研究[J]. 钢铁, 2011, 46(2): 7-11. |
ShaoJ H, GuoZ C, TangH Q. Experimental study on sticking process during reduction of iron ore concentrate fines in fluidized bed[J]. Iron & Steel, 2011, 46(2): 7-11. | |
20 | 邵剑华, 郭占成, 唐惠庆. 还原气氛对流态化还原铁矿粉黏结失流的影响[J]. 北京科技大学学报, 2013, 35(3): 273-281. |
ShaoJ H, GuoZ C, TangH Q. Influence of reducing atmosphere on the sticking during reduction of iron ore fines in a fluidized bed[J]. J. Univ. Sci. Technol. B., 2013, 35(3): 273-281. | |
21 | WangH, SohnH. Effects of firing and reduction conditions on swelling and iron whisker formation during the reduction of iron oxide compact[J]. ISIJ Int., 2011, 51(6): 906-912. |
22 | WangH, SohnH. Effect of CaO and SiO2 on swelling and iron whisker formation during reduction of iron oxide compact[J]. Ironmaking Steelmaking, 2011, 38(6): 447-452. |
23 | WagnerC. Mechanism of the reduction of oxides and sulphides to metals[J]. J. Metal., 1952, 4(2): 214-216. |
24 | NicolleR, RistA. Mechanism of whisker growth in the reduction of wustite[J]. Metall. Mater. Trans. B, 1979, 10(3): 429-438. |
25 | ZhangT, LeiC, ZhuQ. Reduction of fine iron ore via a two-step fluidized bed direct reduction process[J]. Powder Technol., 2014, 254: 1-11. |
26 | 黄希祜. 钢铁冶金原理[M]. 北京: 冶金工业出版社, 2013. |
HuangX G. Principle of Iron and Steel Metallurgy[M]. Beijing: Metallurgical Industry Press, 2013. | |
27 | LuW K. Mechanism of abnormal swelling during the reduction of iron ore pellets[J]. Scand. J. Metall., 1974, 3(2): 49-55. |
28 | YamashitaT, NakadaT, NagataK. In-situ observation of Fe0.94O reduction at high temperature with the use of optical microscopy[J]. Metall. Mater. Trans. B, 2007, 38(2): 185-191. |
29 | 程传煊. 表面物理化学[M]. 北京: 科学技术文献出版社, 1995. |
ChengC X. Physical Chemistry of Surfaces[M]. Beijing: Science and Technology Literature Publishing House, 1995. | |
30 | El-GeassyA A, NasrM I, HessienM M. Effect of reducing gas on the volume change during reduction of iron oxide compacts[J]. ISIJ Int., 1996, 36(6): 640-649. |
31 | MatthewS P, HayesP C. Microstructural changes occurring during the gaseous reduction of magnetite[J]. Metall. Mater. Trans. B, 1990, 21(1): 153-172. |
32 | BrennerS S. Growth and properties of “whiskers”[J]. Science, 1958, 128(3324): 569-575. |
33 | KanekoT. Growth rate of iron whiskers[J]. J. Cryst. Growth, 1978, 44(1): 14-22. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[3] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[4] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[5] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[6] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[7] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[8] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Yanmei ZHANG, Tao YUAN, Jiang LI, Yajie LIU, Zhanxue SUN. Study on the construction of high-efficient SRB mixed microflora and its performance under acid stress [J]. CIESC Journal, 2023, 74(6): 2599-2610. |
[13] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[14] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[15] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||