CIESC Journal ›› 2019, Vol. 70 ›› Issue (11): 4397-4409.DOI: 10.11949/0438-1157.20190445
• Energy and environmental engineering • Previous Articles Next Articles
Xiaohang LI1(),Honggang LIU2,Jianzhou LU2,Yang TENG1(),Kai ZHANG1()
Received:
2019-04-28
Revised:
2019-07-16
Online:
2019-11-05
Published:
2019-11-05
Contact:
Yang TENG,Kai ZHANG
通讯作者:
滕阳,张锴
作者简介:
李晓航(1985—),男,博士研究生,基金资助:
CLC Number:
Xiaohang LI, Honggang LIU, Jianzhou LU, Yang TENG, Kai ZHANG. Kinetics and mechanism of mercury adsorption on fly ashes from pulverized coal boiler and circulating fluidized bed boiler[J]. CIESC Journal, 2019, 70(11): 4397-4409.
李晓航, 刘红刚, 路建洲, 滕阳, 张锴. 煤粉炉和循环流化床锅炉飞灰吸附汞动力学及其吸附机制[J]. 化工学报, 2019, 70(11): 4397-4409.
Add to citation manager EndNote|Ris|BibTeX
编号 | CFB | PC | ||
---|---|---|---|---|
处理前 | 处理后 | 处理前 | 处理后 | |
1 | 2137 | 8.9 | 460.2 | 5.3 |
2 | 2193 | 20.1 | 393.1 | 3.4 |
3 | 2206 | 17.5 | 412.9 | 2.7 |
4 | 2133 | 9.6 | 399.4 | 6.5 |
5 | 1968 | 18.9 | 387.3 | 1.4 |
6 | 2105 | 16.3 | 435.6. | 2.2 |
7 | 2072 | 22.1 | 427.3 | 3.5 |
8 | 2217 | 16.4 | 477.2 | 1.8 |
9 | 2042 | 13.2 | 379.2 | 2.7 |
10 | 1989 | 6.1 | 433.5 | 4.4 |
标准偏差 | 87.9 | 5.3 | 33.6 | 1.6 |
平均值 | 2106.2 | 15.71 | 418.9 | 3.39 |
Table 1 Mercury content in fly ash and heated fly ash/(ng/g)
编号 | CFB | PC | ||
---|---|---|---|---|
处理前 | 处理后 | 处理前 | 处理后 | |
1 | 2137 | 8.9 | 460.2 | 5.3 |
2 | 2193 | 20.1 | 393.1 | 3.4 |
3 | 2206 | 17.5 | 412.9 | 2.7 |
4 | 2133 | 9.6 | 399.4 | 6.5 |
5 | 1968 | 18.9 | 387.3 | 1.4 |
6 | 2105 | 16.3 | 435.6. | 2.2 |
7 | 2072 | 22.1 | 427.3 | 3.5 |
8 | 2217 | 16.4 | 477.2 | 1.8 |
9 | 2042 | 13.2 | 379.2 | 2.7 |
10 | 1989 | 6.1 | 433.5 | 4.4 |
标准偏差 | 87.9 | 5.3 | 33.6 | 1.6 |
平均值 | 2106.2 | 15.71 | 418.9 | 3.39 |
编号 | CFB boiler | PC boiler | ||
---|---|---|---|---|
处理前 | 处理后 | 处理前 | 处理后 | |
相对误差 | 0.27 | 0.1 | ||
1 | 5.32 | 4.98 | 3.22 | 3.13 |
2 | 5.5 | 5.04 | 3.1 | 2.89 |
3 | 5.43 | 5.02 | 3.01 | 2.97 |
4 | 5.17 | 5.21 | 2.97 | 2.93 |
5 | 5.29 | 5.11 | 3.13 | 3.05 |
平均值 | 5.34 | 5.07 | 3.09 | 2.99 |
Table 2 Unburned carbon content in fly ash and heated fly ash/%
编号 | CFB boiler | PC boiler | ||
---|---|---|---|---|
处理前 | 处理后 | 处理前 | 处理后 | |
相对误差 | 0.27 | 0.1 | ||
1 | 5.32 | 4.98 | 3.22 | 3.13 |
2 | 5.5 | 5.04 | 3.1 | 2.89 |
3 | 5.43 | 5.02 | 3.01 | 2.97 |
4 | 5.17 | 5.21 | 2.97 | 2.93 |
5 | 5.29 | 5.11 | 3.13 | 3.05 |
平均值 | 5.34 | 5.07 | 3.09 | 2.99 |
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
k id | C | R 2 | k id | C | R 2 | |
50℃ | 0.01450 | 0.00445 | 0.98051 | 0.06957 | 0.0494 | 0.96174 |
100℃ | 0.01220 | 0.00833 | 0.92372 | 0.06311 | 0.06294 | 0.92594 |
150℃ | 0.01880 | 0.00447 | 0.97958 | 0.06977 | 0.05872 | 0.9664 |
200℃ | 0.01101 | 0.00659 | 0.94983 | 0.05376 | 0.03526 | 0.92102 |
50 μg/m3 | 0.01880 | 0.00447 | 0.97958 | 0.06977 | 0.05872 | 0.9664 |
100 μg/m3 | 0.03088 | 0.01016 | 0.97617 | 0.14434 | 0.10891 | 0.93375 |
150 μg/m3 | 0.04455 | 0.01984 | 0.97412 | 0.18998 | 0.22181 | 0.95036 |
150 ml/min | 0.01479 | 0.00609 | 0.93096 | 0.04744 | 0.04908 | 0.95269 |
200 ml/min | 0.01880 | 0.00447 | 0.97958 | 0.06977 | 0.05872 | 0.9664 |
250 ml/min | 0.02564 | 0.01626 | 0.92208 | 0.09387 | 0.04647 | 0.96227 |
Table 3 Fitting parameters and R 2 of Weber and Morris kinetic model
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
k id | C | R 2 | k id | C | R 2 | |
50℃ | 0.01450 | 0.00445 | 0.98051 | 0.06957 | 0.0494 | 0.96174 |
100℃ | 0.01220 | 0.00833 | 0.92372 | 0.06311 | 0.06294 | 0.92594 |
150℃ | 0.01880 | 0.00447 | 0.97958 | 0.06977 | 0.05872 | 0.9664 |
200℃ | 0.01101 | 0.00659 | 0.94983 | 0.05376 | 0.03526 | 0.92102 |
50 μg/m3 | 0.01880 | 0.00447 | 0.97958 | 0.06977 | 0.05872 | 0.9664 |
100 μg/m3 | 0.03088 | 0.01016 | 0.97617 | 0.14434 | 0.10891 | 0.93375 |
150 μg/m3 | 0.04455 | 0.01984 | 0.97412 | 0.18998 | 0.22181 | 0.95036 |
150 ml/min | 0.01479 | 0.00609 | 0.93096 | 0.04744 | 0.04908 | 0.95269 |
200 ml/min | 0.01880 | 0.00447 | 0.97958 | 0.06977 | 0.05872 | 0.9664 |
250 ml/min | 0.02564 | 0.01626 | 0.92208 | 0.09387 | 0.04647 | 0.96227 |
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
q e | k 1 | R 2 | q e | k 1 | R 2 | |
50℃ | 0.05837 | 0.22833 | 0.98249 | 0.58472 | 0.05534 | 0.9915 |
100℃ | 0.0501 | 0.32144 | 0.99149 | 0.49164 | 0.07773 | 0.99682 |
150℃ | 0.07935 | 0.19366 | 0.98686 | 0.67385 | 0.04211 | 0.98949 |
200℃ | 0.03852 | 0.44212 | 0.97532 | 0.36692 | 0.09013 | 0.99924 |
50 μg/m3 | 0.07935 | 0.19366 | 0.98686 | 0.67385 | 0.04211 | 0.98949 |
100 μg/m3 | 0.13881 | 0.18116 | 0.98361 | 1.3921 | 0.04198 | 0.99895 |
150 μg/m3 | 0.21134 | 0.176 | 0.98027 | 1.98264 | 0.04002 | 0.9914 |
150 ml/min | 0.05392 | 0.33353 | 0.99671 | 0.44257 | 0.04971 | 0.99109 |
200 ml/min | 0.07935 | 0.19366 | 0.98686 | 0.67385 | 0.04211 | 0.98949 |
250 ml/min | 0.11767 | 0.23313 | 0.99683 | 0.94083 | 0.03428 | 0.99627 |
Table 4 Fitting parameters and R 2 of pseudo-first order kinetic model
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
q e | k 1 | R 2 | q e | k 1 | R 2 | |
50℃ | 0.05837 | 0.22833 | 0.98249 | 0.58472 | 0.05534 | 0.9915 |
100℃ | 0.0501 | 0.32144 | 0.99149 | 0.49164 | 0.07773 | 0.99682 |
150℃ | 0.07935 | 0.19366 | 0.98686 | 0.67385 | 0.04211 | 0.98949 |
200℃ | 0.03852 | 0.44212 | 0.97532 | 0.36692 | 0.09013 | 0.99924 |
50 μg/m3 | 0.07935 | 0.19366 | 0.98686 | 0.67385 | 0.04211 | 0.98949 |
100 μg/m3 | 0.13881 | 0.18116 | 0.98361 | 1.3921 | 0.04198 | 0.99895 |
150 μg/m3 | 0.21134 | 0.176 | 0.98027 | 1.98264 | 0.04002 | 0.9914 |
150 ml/min | 0.05392 | 0.33353 | 0.99671 | 0.44257 | 0.04971 | 0.99109 |
200 ml/min | 0.07935 | 0.19366 | 0.98686 | 0.67385 | 0.04211 | 0.98949 |
250 ml/min | 0.11767 | 0.23313 | 0.99683 | 0.94083 | 0.03428 | 0.99627 |
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
k 2 q e 2 | k 2 | R 2 | k 2 q e 2 | k 2 | R 2 | |
50℃ | 0.016986 | 3.08933 | 0.99378 | 0.04159 | 0.07674 | 0.9986 |
100℃ | 0.021945 | 5.94426 | 0.99625 | 0.050562 | 0.13797 | 0.99796 |
150℃ | 0.019274 | 1.85765 | 0.99491 | 0.036524 | 0.05077 | 0.99829 |
200℃ | 0.023564 | 10.85572 | 0.99291 | 0.042458 | 0.20136 | 0.99323 |
50 μg/m3 | 0.019274 | 1.85765 | 0.99491 | 0.036524 | 0.05077 | 0.99829 |
100 μg/m3 | 0.031936 | 1.02297 | 0.99244 | 0.074061 | 0.02394 | 0.99473 |
150 μg/m3 | 0.048231 | 0.68407 | 0.99238 | 0.104182 | 0.0172 | 0.99871 |
150 ml/min | 0.023527 | 5.26137 | 0.99673 | 0.02883 | 0.09525 | 0.99817 |
200 ml/min | 0.019274 | 1.85765 | 0.99491 | 0.036524 | 0.05077 | 0.99829 |
250 ml/min | 0.036529 | 1.75481 | 0.99777 | 0.040162 | 0.02749 | 0.99785 |
Table 5 Fitting parameters and R 2 of pseudo-second order kinetic model
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
k 2 q e 2 | k 2 | R 2 | k 2 q e 2 | k 2 | R 2 | |
50℃ | 0.016986 | 3.08933 | 0.99378 | 0.04159 | 0.07674 | 0.9986 |
100℃ | 0.021945 | 5.94426 | 0.99625 | 0.050562 | 0.13797 | 0.99796 |
150℃ | 0.019274 | 1.85765 | 0.99491 | 0.036524 | 0.05077 | 0.99829 |
200℃ | 0.023564 | 10.85572 | 0.99291 | 0.042458 | 0.20136 | 0.99323 |
50 μg/m3 | 0.019274 | 1.85765 | 0.99491 | 0.036524 | 0.05077 | 0.99829 |
100 μg/m3 | 0.031936 | 1.02297 | 0.99244 | 0.074061 | 0.02394 | 0.99473 |
150 μg/m3 | 0.048231 | 0.68407 | 0.99238 | 0.104182 | 0.0172 | 0.99871 |
150 ml/min | 0.023527 | 5.26137 | 0.99673 | 0.02883 | 0.09525 | 0.99817 |
200 ml/min | 0.019274 | 1.85765 | 0.99491 | 0.036524 | 0.05077 | 0.99829 |
250 ml/min | 0.036529 | 1.75481 | 0.99777 | 0.040162 | 0.02749 | 0.99785 |
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
α | β | R 2 | α | β | R 2 | |
50℃ | 0.02494 | 51.4842 | 0.99749 | 0.06167 | 5.24998 | 0.99588 |
100℃ | 0.03768 | 70.0108 | 0.98555 | 0.08011 | 6.7114 | 0.98541 |
150℃ | 0.02736 | 36.5723 | 0.99673 | 0.05445 | 4.56905 | 0.99729 |
200℃ | 0.04169 | 92.42585 | 0.9949 | 0.06329 | 8.50497 | 0.97737 |
50 μg/m3 | 0.02736 | 36.5723 | 0.99673 | 0.05445 | 4.56905 | 0.99729 |
100 μg/m3 | 0.04659 | 21.50743 | 0.99449 | 0.10741 | 2.17394 | 0.98187 |
150 μg/m3 | 0.07336 | 14.73842 | 0.99602 | 0.16172 | 1.62267 | 0.99394 |
150 ml/min | 0.03638 | 59.73674 | 0.98511 | 0.04473 | 7.24959 | 0.99396 |
200 ml/min | 0.02736 | 36.5723 | 0.99673 | 0.05445 | 4.56905 | 0.99729 |
250 ml/min | 0.05899 | 28.49847 | 0.98443 | 0.05603 | 3.05738 | 0.99261 |
Table 6 Fitting parameters and R 2 of Elovich kinetic model
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
α | β | R 2 | α | β | R 2 | |
50℃ | 0.02494 | 51.4842 | 0.99749 | 0.06167 | 5.24998 | 0.99588 |
100℃ | 0.03768 | 70.0108 | 0.98555 | 0.08011 | 6.7114 | 0.98541 |
150℃ | 0.02736 | 36.5723 | 0.99673 | 0.05445 | 4.56905 | 0.99729 |
200℃ | 0.04169 | 92.42585 | 0.9949 | 0.06329 | 8.50497 | 0.97737 |
50 μg/m3 | 0.02736 | 36.5723 | 0.99673 | 0.05445 | 4.56905 | 0.99729 |
100 μg/m3 | 0.04659 | 21.50743 | 0.99449 | 0.10741 | 2.17394 | 0.98187 |
150 μg/m3 | 0.07336 | 14.73842 | 0.99602 | 0.16172 | 1.62267 | 0.99394 |
150 ml/min | 0.03638 | 59.73674 | 0.98511 | 0.04473 | 7.24959 | 0.99396 |
200 ml/min | 0.02736 | 36.5723 | 0.99673 | 0.05445 | 4.56905 | 0.99729 |
250 ml/min | 0.05899 | 28.49847 | 0.98443 | 0.05603 | 3.05738 | 0.99261 |
1 | UNEP . Mercury fate and transport in the global atmosphere: measurement, models and policy implication report [R]. Geneva, Switzerland: UNEP, 2008. |
2 | UNEP . Global mercury assessment 2013: sources, emissions , releases and environmental transport [R]. Geneva, Switzerland: UNEP Chemicals Branch, 2013. |
3 | 杜雯, 殷立宝, 禚玉群, 等 . 100 MW燃煤电厂非碳基吸附剂喷射脱汞实验研究[J]. 化工学报, 2014, 65(11): 4413-4419. |
Du W, Yin L B, Zhuo Y Q, et al Experimental study on mercury capture using non-carbon sorbents in 100 MW coal-fired power plant [J]. CIESC Journal, 2014, 65(11): 4413-4419. | |
4 | 王铮, 薛建明, 许月阳, 等 . 选择性催化还原协同控制燃煤烟气中汞排放效果影响因素研究[J]. 中国电机工程学报, 2013, 33(14): 32-37. |
Wang Z , Xue J M , Xu Y Y , et al . Research on influencing factors of SCR’s cooperative control in mercury emissions from coal-fired flue [J]. Proceedings of the CSEE, 2013, 33(14): 32-37. | |
5 | 李建荣, 何炽, 商雪松, 等 . SCR脱硝催化剂对烟气中零价汞的氧化效率研究[J]. 燃料化学学报, 2012, 40(2): 241-246. |
LI J R , He C , Shang X S , et .al Oxidation efficiency of elemental mercury in flue gas by SCR De-NO x catalysts [J]. Journal of Fuel Chemistry and Technology, 2012, 40(2): 241-246. | |
6 | Tang T M , Xu J , Lu R J , et al . Enhanced Hg2+ removal and Hg0 reemission control from wet fuel gas desulfurization liquors with additives[J]. Fuel, 2010, 89 (12): 3613-3617. |
7 | Pudasainee D , Seo Y C , Sung J H . Mercury co-beneficial capture in air pollution control devices of coal-fired power plants[J]. International Journal of Coal Geology, 2017, 170: 48-53. |
8 | Hower J C , Senior C L , Suuberg E M , et al . Mercury capture by native fly ash carbons in coal-fired power plants [J]. Progress in Energy & Combustion Science, 2010, 36(4): 510-529. |
9 | Sakulpitakphon T , Hower J C , Trimble A S , et al . Mercury capture by fly ash: study of the combustion of a high-mercury coal at a utility boiler [J]. Energy Fuels, 2000, 14(3): 727-733. |
10 | 王鹏, 吴江, 任建兴, 等 . 飞灰未燃尽碳对吸附烟气汞影响的试验研究[J]. 动力工程学报, 2012, 32(4): 332-337. |
Wang P , Wu J , Ren J X , et al . Experimental study on influence of unburned carbon in fly ash on mercury adsorption in flue gas [J]. Journal of Chinese Society of Power Engineering, 2012, 32(4): 332-337. | |
11 | 江贻满, 段钰锋, 杨祥花, 等 . ESP飞灰对燃煤锅炉烟气汞的吸附特性[J]. 东南大学学报(自然科学版), 2007, 37(3): 436-440. |
Jiang Y M , Duan Y F , Yang X H , et al . Adsorption characterization of coal fired flue gas mercury by ESP fly ashes [J]. Journal of Southeast University (Natural Science Edition), 2007, 37(3): 436-440. | |
12 | Kostova I , Vassileva C , Dai S , et al . Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants [J]. International Journal of Coal Geology, 2013, 116/117(5): 227-235. |
13 | Maroto-Valer M M , Zhang Y , Granite E J , et al . Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample [J]. Fuel, 2005, 84(1): 105-108. |
14 | Zhou Q , Duan Y , Zhu C , et al . Adsorption equilibrium, kinetics and mechanism studies of mercury on coal-fired fly ash [J]. Korean Journal of Chemical Engineering, 2015, 32(7): 1405-1413. |
15 | 顾永正, 张永生, 张振森, 等 . 燃煤飞灰汞吸附动力学及其模型研究[J]. 热力发电, 2015, 44(12): 11-18. |
Gu Y Z , Zhang Y S , Zhang Z S , et al . Adsorption kinetics and models of coal-fired fly ash from mercury removal[J]. Thermal Power Generation, 2015, 44(12): 11-18. | |
16 | 程乐鸣, 岑可法, 倪明江, 等 .循环流化床锅炉炉膛热力计算[J].中国电机工程学报, 2002, 22(12): 146-151. |
Cheng L M , Cen K F , Ni M J , et al . Thermal calculation of a circulating fluidized bed boiler furnace [J]. Proceedings of the CSEE, 2002, 22(12): 146-151. | |
17 | 姜秀民, 孙东红, 闫澈, 等 . 65t/h 示范性油页岩循环流化床电厂锅炉运行实践[J].中国电机工程学报, 2001, 21(2): 69-73. |
Jiang X M , Sun D H , Yan C , et al . Performance characteristics of 65t/h oil shale-fired circulating fluidized bed demonstration utility boiler[J].Proceedings of the CSEE, 2001, 21(2): 69-73. | |
18 | 谢磊, 毛国明, 金晓明, 等 . 循环流化床锅炉燃烧过程预测控制与经济性能优化[J]. 化工学报, 2016, 67(3): 695-700. |
Xie L , Mao G M , Jin X M , et al . Predictive control and economic performance optimization of CFBB combustion process [J]. CIESC Journal, 2016, 67(3): 695-700. | |
19 | 樊保国, 贾里, 李晓栋, 等 . 电站燃煤锅炉飞灰特性对其吸附汞能力的影响[J]. 动力工程学报, 2016, 36(8): 621-628. |
Fan B G , Jia L , Li X D , et al . Study on mercury adsorption by fly ash form coal-fired coilers of power plants [J]. Journal of Chinese Society of Power Engineering, 2016, 36(8): 621-628. | |
20 | 段钰锋, 江贻满, 杨立国, 等 . 循环流化床锅炉汞排放和吸附实验研究[J]. 中国电机工程学报, 2008, 28 (32): 1-5. |
Duan Y F , Jiang Y M , Yang L G , et al . Experimental study on mercury emission and adsorption in circulating fluidized bed boiler [J]. Proceedings of the CSEE, 2008, 28 (32): 1-5. | |
21 | 李晓航, 刘芸, 苏银皎, 等 . 煤粉炉和循环流化床锅炉飞灰特性对其汞吸附能力的影响[J]. 化工学报, 2019, 70(3): 1075-1082. |
Li X H , Liu Y , Su Y J , et al . Difference of fly ash characteristics from PC and CFB boilers and its effect on mercury adsorption capability [J]. CIESC Journal, 2019, 70(3): 1075-1082. | |
22 | 黄勋, 程乐鸣, 蔡毅, 等 . 循环流化床中烟气飞灰汞迁移试验研究[J]. 化工学报, 2014, 65(4): 1387-1395. |
Huang X , Cheng L M , Cai Y , et al . Mercury migration between flue gas and fly ash in circulating fluidized bed [J]. CIESC Journal, 2014, 65(4): 1387-1395. | |
23 | Serre S D , Gullett B K , Ghorishi S B , et al . Entrained-flow adsorption of mercury using activated carbon[J]. Air & Waste Management Association, 2001, 51(5): 733-741. |
24 | 李兵, 蒋海涛, 张立强, 等 . SO2在活性炭表面的吸附平衡和吸附动力学[J]. 煤炭学报, 2012, 37(10): 1737-1742. |
Li B , Jiang H T , Zhang L Q , et al . Adsorption equilibrium and kinetics of SO2 on activated carbon [J]. Journal of China Coal Society, 2012, 37(10): 1737-1742. | |
25 | Kumar Y P , King P , Prasad V S R K . Equilibrium and kinetic studies for the biosorption system of copper (II) ion from aqueous solution using Tectona grandis L.f. leaves powder [J]. Journal of Hazardous Materials, 2006, 137(2): 1211-1217. |
26 | Ozcan A S , Ozcan A . Adsorption of acid dyes from aqueous solutions onto acid-activated bentonitee [J]. Journal of Colloid and Interface Science, 2004, 276(1): 39-46. |
27 | Plazinski W , Dziuba J , Rudzinski W . Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity [J]. Adsorption-Journal of the International Adsorption Society, 2013, 19(5): 1055-1064. |
28 | Plazinski W , Dziuba J , Rudzinski W . Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity [J]. Adsorption, 2013, 19(5): 1055-1064. |
29 | Skodras G , Diamantopoulou I , Pantoleontos G , et al . Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor [J]. Journal of Hazardous Materials, 2008, 158(1): 1-13. |
30 | 尹艳山, 张军, 盛昌栋, 等 . NO在活性炭表面的吸附平衡和动力学研究[J]. 中国电机工程学报, 2010, 30(35): 49-54. |
Yin Y S , Zhang J , Sheng C D , et al . Adsorption equilibrium and kinetics of NO removal on activated carbons [J]. Proceedings of the CSEE, 2010, 30(35): 49-54. |
[1] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[2] | Ke YANG, Yue JIA, Hong JI, Zhixiang XING, Juncheng JIANG. Study on the inhibition effect and mechanism of waste incineration fly ash on gas explosion pressure and flame propagation [J]. CIESC Journal, 2023, 74(8): 3597-3607. |
[3] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[4] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[9] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[10] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[11] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[14] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[15] | Qian WANG, Shenyong LI, Shuai KANG, Wei PANG, Longlong HAO, Shenjun QIN. Research progress of pretreatment technology for efficient utilization of coal ash [J]. CIESC Journal, 2023, 74(3): 1010-1032. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||