CIESC Journal ›› 2019, Vol. 70 ›› Issue (6): 2192-2201.DOI: 10.11949/0438-1157.20181500
• Separation engineering • Previous Articles Next Articles
Yu CAO1(),Le WANG2,Chao JI1,Yanzhao HUANG3,Zhilei XUE4,Jianming LU4,Hong QI1()
Received:
2018-12-21
Revised:
2019-04-01
Online:
2019-06-05
Published:
2019-06-05
Contact:
Hong QI
曹语1(),王乐2,季超1,黄延召3,薛志磊4,陆剑鸣4,漆虹1()
通讯作者:
漆虹
作者简介:
<named-content content-type="corresp-name">曹语</named-content>(1994—),男,硕士研究生,<email>614033268@qq.com</email>
基金资助:
CLC Number:
Yu CAO, Le WANG, Chao JI, Yanzhao HUANG, Zhilei XUE, Jianming LU, Hong QI. Pilot-scale application on dissipation of smoke plume from flue gas using ceramic membrane condensers[J]. CIESC Journal, 2019, 70(6): 2192-2201.
曹语, 王乐, 季超, 黄延召, 薛志磊, 陆剑鸣, 漆虹. 陶瓷膜冷凝器用于烟气脱白烟过程的中试研究[J]. 化工学报, 2019, 70(6): 2192-2201.
Add to citation manager EndNote|Ris|BibTeX
Parameter | Value |
---|---|
membrane average pore size/nm | 5, 20, 50 |
membrane outer/inner diameter/mm | 12.5/8 |
effective length of membrane/mm | 500 |
effective area of membrane/m2 | 0.0196 |
Table1 Parameters of tubular ceramic membrane
Parameter | Value |
---|---|
membrane average pore size/nm | 5, 20, 50 |
membrane outer/inner diameter/mm | 12.5/8 |
effective length of membrane/mm | 500 |
effective area of membrane/m2 | 0.0196 |
Parameter | Range |
---|---|
effective area of membrane/m2 | 0.2~0.3 |
inlet gas velocity/(m·s–1) | 2.5~7.5 |
inlet gas temperature/℃ | 50~65 |
relative humidity of inlet gas/% | 47~100 |
Table2 Parameter ranges of pilot-scale apparatus
Parameter | Range |
---|---|
effective area of membrane/m2 | 0.2~0.3 |
inlet gas velocity/(m·s–1) | 2.5~7.5 |
inlet gas temperature/℃ | 50~65 |
relative humidity of inlet gas/% | 47~100 |
Installation type | Average pore size of ceramic membranes installed in first stage/nm | Average pore size of ceramic membranes installed in second stage/nm | Average pore size of ceramic membranes installed in third stage/nm |
---|---|---|---|
installation 1 | 5 | 5 | 5 |
installation 2 | 20 | 20 | 20 |
installation 3 | 50 | 50 | 50 |
installation 4 | 50 | 50 | 5 |
Table 3 Installation types of ceramic membranes within three-stage membrane condensers
Installation type | Average pore size of ceramic membranes installed in first stage/nm | Average pore size of ceramic membranes installed in second stage/nm | Average pore size of ceramic membranes installed in third stage/nm |
---|---|---|---|
installation 1 | 5 | 5 | 5 |
installation 2 | 20 | 20 | 20 |
installation 3 | 50 | 50 | 50 |
installation 4 | 50 | 50 | 5 |
Materials | Hot fluid | Cold fluid | Heat transfer coefficient/ (W·m–2·℃–1) |
---|---|---|---|
stainless steel | steam-air mixture | water | 205 |
fluorine plastic | flue gas | water | 275 |
ceramic membranes | steam-air mixture | water | 415 |
Table 4 Heat transfer coefficients of shell-and-tube condensers with different materials
Materials | Hot fluid | Cold fluid | Heat transfer coefficient/ (W·m–2·℃–1) |
---|---|---|---|
stainless steel | steam-air mixture | water | 205 |
fluorine plastic | flue gas | water | 275 |
ceramic membranes | steam-air mixture | water | 415 |
1 | Ma S , Chai J , Jiao K , et al . Environmental influence and countermeasures for high humidity flue gas discharging from power plants[J]. Renewable & Sustainable Energy Reviews, 2017, 73: 225-235. |
2 | Xu G , Huang S , Yang Y , et al . Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas[J]. Applied Energy, 2013, 112(4): 907-917. |
3 | Chen H P , Zhou Y N , Cao S T , et al . Heat exchange and water recovery experiments of flue gas with using nanoporous ceramic membranes[J]. Applied Thermal Engineering, 2017, 110: 686-694. |
4 | 郭静娟 . 燃煤电站烟囱排放有色烟羽现象研究[J]. 华电技术, 2017, 39(1): 73-74. |
Guo J J . Coal-fired power plant stack emission colored smoke plume study[J]. Huadian Technology, 2017, 39(1): 73-74. | |
5 | 邓骥, 魏芳 . 湿法烟气脱硫过程白烟成因及防治措施分析[J]. 石油与天然气化工, 2017, 46(2): 17-21. |
Deng J , Wei F . Analysis on the causes and prevention measures of white mist in wet flue gas desulfurization[J]. Chemical Engineering of Oil & Gas, 2017, 46(2): 17-21 | |
6 | Wang D . Advanced Energy and water recovery technology from low grade waste heat[R]. Office of Scientific & Technical Information Technical Reports, 2011. |
7 | Wang D . Transport Membrane condenser for water and energy recovery from power plant flue gas[R]. Office of Scientific & Technical Information Technical Reports, 2012. |
8 | Kim J , Park A , Kim S J , et al . Harnessing clean water from power plant emissions using membrane condenser technology[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 6425-6433. |
9 | 李云, 胡浩威 . 润湿性对纳米多孔陶瓷膜输运性能的影响[J]. 化工学报, 2017, 68(9): 3474-3481. |
Li Y , Hu H W . Effect of wettability on nanoporous ceramic membrane for condensate transport performance[J]. CIESC Journal, 2017, 68(9): 3474-3481. | |
10 | Hu H W , Tang G H , Niu D . Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery[J]. Scientific Reports, 2016, 6: 27274. |
11 | Yang B , Chen H P , Ye C , et al . Experimental study on differences of heat and mass flux between 10- and 50-nm pore-sized nano-porous ceramic membranes[J]. Journal of the Australian Ceramic Society, 2018, (3): 1-12. |
12 | Bao A , Wang D , Lin C X . Nanoporous membrane tube condensing heat transfer enhancement study[J]. International Journal of Heat & Mass Transfer, 2015, 84: 456-462. |
13 | Zhao S F , Yan S P , Wang D K , et al . Simultaneous heat and water recovery from flue gas by membrane condensation : experimental investigation[J]. Applied Thermal Engineering, 2017, 113: 843-850. |
14 | Wang T T , Yue M W , Qi H , et al . Transport membrane condenser for water and heat recovery from gaseous streams: performance evaluation[J]. Journal of Membrane Science, 2015, 484: 10-17. |
15 | Yue M W , Zhao S F , Feron P H M , et al . Multichannel tubular ceramic membrane for water and heat recovery from waste gas streams[J]. Industrial & Engineering Chemistry Research, 2016, 55(9): 2615-2622. |
16 | 孟庆莹, 曹语, 黄延召, 等 . 过程参数对采用多孔陶瓷超滤膜回收烟气中余热和水性能的影响[J]. 化工学报, 2018, 69(6): 2519-2525. |
Meng Q Y , Cao Y , Huang Y Z , et al . Effects of process parameters on water and waste heat recovery from flue gas using ceramic ultrafiltration membranes[J]. CIESC Journal, 2018, 69(6): 2519-2525. | |
17 | 管国锋, 赵汝溥 . 化工原理[M]. 3版. 化学工业出版社, 2010. |
Guan G F , Zhao R P . Unite Operation of Chemical Engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2010: 171-172. | |
18 | Zhou Y , Chen H , Xie T , et al . Effect of mass transfer on heat transfer of microporous ceramic membranes for water recovery[J]. International Journal of Heat & Mass Transfer, 2017, 112: 643-648. |
19 | Colburn A P , Hougen O A . Design of cooler condensers for mixtures of vapors with noncondensing Gases[J]. Indengchem, 1933, 26(11): 1178-1182. |
20 | 杨世铭, 陶文铨 . 传热学[M]. 4版. 北京: 高等教育出版社, 2006. |
Yang S M , Tao W S . Heat Transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 251-252. | |
21 | Wang D X , Bao A , Kunc W , et al . Coal power plant flue gas waste heat and water recovery[J]. Applied Energy, 2012, 91(1): 341-348. |
22 | Wroblewski W , Dykas S , Rulik S . Selection of the cooling system configuration for an ultra-critical coal-fired power plant[J]. Energy Conversion & Management, 2013, 76(30): 554-560. |
23 | 梅雪莲 . 风力发电机组水冷却系统换热器串并联研究[J]. 制冷与空调, 2012, 12(6): 40-43. |
Mei X L . Series and parallel connection research on heat exchangers of water-cooled system for wind turbine[J]. Refrigeration and Air-Conditioning, 2012, 12(6): 40-43. | |
24 | 袁晓军, 于太增, 邵丽萍 . 串/并联全热回收风冷式冷(热)水系统的性能分析[J]. 制冷与空调, 2017, 17(6): 63-66. |
Yuan X J , Yu T Z , Shao L P . Performance analysis of air cooled heat pump (chiller) with series/parallel total heat recovery exchanger[J]. Refrigeration and Air-Conditioning, 2017, 17(6): 63-66. | |
25 | Che D F , Da Y D , Zhuang Z N . Heat and mass transfer characteristics of simulated high moisture flue gases[J]. Heat & Mass Transfer, 2005, 41(3): 250-256. |
26 | Chen H P , Zhou Y N , Su X , et al . Experimental study of water recovery from flue gas using hollow micro-nano porous ceramic composite membranes[J]. Journal of Industrial & Engineering Chemistry, 2018, 57: 349-355. |
27 | Zolfaghari A , Dehghanpour H , Xu M . Water sorption behaviour of gas shales: II. Pore size distribution[J]. International Journal of Coal Geology, 2017, 179: 187-195. |
28 | Uhlhorn R J R , Keizer K , Burggraaf A J . Gas transport and separation with ceramic membranes. (Ⅰ): Multilayer diffusion and capillary condensation[J]. Journal of Membrane Science, 2017, 66(2): 259-269. |
29 | Horikawa T , Do D D , Nicholson D . Capillary condensation of adsorbates in porous materials[J]. Adv. Colloid Interface Sci., 2011, 169(1): 40-58. |
30 | Xiong Y Y , Tan H Z , Wang Y B , et al . Pilot-scale study on water and latent heat recovery from flue gas using fluorine plastic heat exchangers[J]. Journal of Cleaner Production, 2017, 161: 1416-1422. |
31 | Shi X J , Che D F , Agnew B , et al . An investigation of the performance of compact heat exchanger for latent heat recovery from exhaust flue gases[J]. International Journal of Heat & Mass Transfer, 2011, 54(1): 606-615. |
[1] | Chao JI, Wei LIU, Hong QI. Flue gas dehumidification through air cooling enhanced by hydrophobic ceramic membranes [J]. CIESC Journal, 2022, 73(5): 2174-2182. |
[2] | RONG-YANG Yiming, WU Qiaoxian, ZHOU Xia, FANG Song, WANG Kai, QIU Limin, ZHI Xiaoqin. Research on optimization of self-utilization performance of air compression waste heat in air separation system [J]. CIESC Journal, 2021, 72(3): 1654-1666. |
[3] | Yuting SHI, Lin HUANGFU, Changming LI, Yue WANG, Shiqiu GAO, Xiaoguang SAN, Zhennan HAN, Jian YU. Preparation and pilot-scale test of V2O5-MoO3/TiO2 catalytic filter bag [J]. CIESC Journal, 2021, 72(11): 5598-5606. |
[4] | Zhonglan HOU, Xinli WEI, Xinling MA, Xiangrui MENG. Experimental analysis of circulating water flow rate on performance of ORC waste heat power generation system [J]. CIESC Journal, 2019, 70(9): 3283-3290. |
[5] | MENG Qingying, CAO Yu, HUANG Yanzhao, WANG Le, LI Li, NIU Shufeng, QI Hong. Effects of process parameters on water and waste heat recovery from flue gas using ceramic ultrafiltration membranes [J]. CIESC Journal, 2018, 69(6): 2519-2525. |
[6] | DU Wenjing, SUN Huimin, CHENG Lin. Experimental research and numerical analysis of heat collector performance for waste heat recovery [J]. CIESC Journal, 2018, 69(5): 1946-1955. |
[7] | TIAN Hua, JING Dongzhan, WANG Xuan, LIU Peng, YU Zhigang. Part-load performance analysis of cogeneration system for engine waste heat recovery [J]. CIESC Journal, 2018, 69(2): 792-800. |
[8] | CHAI Junlin, TIAN Rui, YANG Fubin, ZHANG Hongguang. Thermo-economic comparative analysis of different organic Rankine cycle system schemes for vehicle diesel engine waste heat recovery [J]. CIESC Journal, 2017, 68(8): 3258-3265. |
[9] | LU Huitong, JIANG Long, WANG Liwei, WANG Ruzhu. Instantaneous steady state of pumpless organic Rankine cycle driven by low temperature heat source [J]. CIESC Journal, 2017, 68(12): 4709-4716. |
[10] | LIU Huanwei. Cooling performances of gas engine heat pump system and analysis of waste heat utilization [J]. CIESC Journal, 2017, 68(1): 50-56. |
[11] | WA Yimin, WU Jiying. Heating performance of landfill gas fuled biogas engine driven air source heat pump [J]. CIESC Journal, 2016, 67(S2): 370-377. |
[12] | ZHU Ming, WANG Yong. CFD simulation for atomic layer deposition on large scale ceramic membranes [J]. CIESC Journal, 2016, 67(9): 3720-3729. |
[13] | YANG Kai, ZHANG Hongguang, SONG Songsong, YAO Baofeng. Waste heat organic Rankine cycle of vehicle diesel engine under variable working conditions [J]. CIESC Journal, 2015, 66(3): 1097-1103. |
[14] | ZHANG Hongguang, WANG Hongjin, YANG Kai, YANG Fubin, SONG Songsong, CHANG Ying, BEI Chen, MENG Fanxiao. Parametric optimization of organic Rankine cycle for vehicle diesel enginebased on particle swarm optimization [J]. CIESC Journal, 2015, 66(12): 5031-5039. |
[15] | WANG Mingtao, LIU Huanwei, ZHANG Baihao. Theoretical and experimental study on heating performance of gas engine-driven heat pump [J]. CIESC Journal, 2015, 66(10): 3834-3840. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||