CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1491-1501.DOI: 10.11949/0438-1157.20190964
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xinghui WU1(),Zhen YANG1,Ying CHEN2,Yuanyuan DUAN1()
Received:
2019-08-22
Revised:
2020-01-14
Online:
2020-04-05
Published:
2020-04-05
Contact:
Yuanyuan DUAN
通讯作者:
段远源
作者简介:
吴兴辉(1994—),男,博士研究生,基金资助:
CLC Number:
Xinghui WU, Zhen YANG, Ying CHEN, Yuanyuan DUAN. Simulation studies on heat transfer characteristics of PCM micro-encapsulated fluids based on discrete phase model[J]. CIESC Journal, 2020, 71(4): 1491-1501.
吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
Add to citation manager EndNote|Ris|BibTeX
材料 | ρ/(kg/m3) | cp /(J/(kg·K)) | k/(W/(m·K)) | ?H/(kJ/kg) |
---|---|---|---|---|
PMMA | 1,190 | 1,470 | 0.21 | |
石蜡 | 931.4 | 2,136 | 0.2 | 190 |
Table 1 Physical properties of PMMA and paraffin
材料 | ρ/(kg/m3) | cp /(J/(kg·K)) | k/(W/(m·K)) | ?H/(kJ/kg) |
---|---|---|---|---|
PMMA | 1,190 | 1,470 | 0.21 | |
石蜡 | 931.4 | 2,136 | 0.2 | 190 |
质量分数ω/% | ?T/K | ?T减小/% | Nu | 提升/% |
---|---|---|---|---|
2 | 3.69 | — | 9.83 | — |
5 | 3.18 | 13.8 | 10.1 | 2.44 |
8 | 2.9 | 21.4 | 10.2 | 3.76 |
Table 2 Comparison of microcapsules with different mass fraction
质量分数ω/% | ?T/K | ?T减小/% | Nu | 提升/% |
---|---|---|---|---|
2 | 3.69 | — | 9.83 | — |
5 | 3.18 | 13.8 | 10.1 | 2.44 |
8 | 2.9 | 21.4 | 10.2 | 3.76 |
粒径大小/μm | ?T/K | ?T减小/% | Nu | 提升/% |
---|---|---|---|---|
100 | 4 | — | 9.69 | — |
50 | 3.84 | 4 | 9.76 | 0.72 |
10 | 3.18 | 20.5 | 10.1 | 3.92 |
Table 3 Comparison of microcapsules with different particle size
粒径大小/μm | ?T/K | ?T减小/% | Nu | 提升/% |
---|---|---|---|---|
100 | 4 | — | 9.69 | — |
50 | 3.84 | 4 | 9.76 | 0.72 |
10 | 3.18 | 20.5 | 10.1 | 3.92 |
微胶囊 | ?T/K | ?T减小/% | Nu | 提升/% |
---|---|---|---|---|
不发生相变的微胶囊 | 3.9 | — | 9.74 | — |
常规相变的微胶囊 | 3.18 | 18.5 | 10.1 | 3.39 |
相变潜热为正常值两倍时的相变微胶囊 | 2.98 | 23.6 | 10.2 | 4.31 |
Table 4 Comparison of microcapsules with different latent heat
微胶囊 | ?T/K | ?T减小/% | Nu | 提升/% |
---|---|---|---|---|
不发生相变的微胶囊 | 3.9 | — | 9.74 | — |
常规相变的微胶囊 | 3.18 | 18.5 | 10.1 | 3.39 |
相变潜热为正常值两倍时的相变微胶囊 | 2.98 | 23.6 | 10.2 | 4.31 |
模型 | 离散相 | 单相流 | 相对偏差/% |
---|---|---|---|
2%出流面?T/K | 3.69 | 4.21 | 14.1 |
2%壁面Nu | 9.83 | 9.60 | -2.34 |
5%出流面?T/K | 3.18 | 3.70 | 16.4 |
5%壁面Nu | 10.1 | 9.83 | -2.38 |
8%出流面?T/K | 2.90 | 3.40 | 17.2 |
8%壁面Nu | 10.2 | 9.96 | -2.35 |
Table 5 Comparison between discrete phase model and single phase model
模型 | 离散相 | 单相流 | 相对偏差/% |
---|---|---|---|
2%出流面?T/K | 3.69 | 4.21 | 14.1 |
2%壁面Nu | 9.83 | 9.60 | -2.34 |
5%出流面?T/K | 3.18 | 3.70 | 16.4 |
5%壁面Nu | 10.1 | 9.83 | -2.38 |
8%出流面?T/K | 2.90 | 3.40 | 17.2 |
8%壁面Nu | 10.2 | 9.96 | -2.35 |
1 | Cui Y , Xie J , Liu J , et al . A review on phase change material application in building[J]. Adv. Mech. Eng., 2017, 9(6): 168781401770082. |
2 | Pasupathy A , Velraj R , Seeniraj R V , et al . Phase change material-based building architecture for thermal management in residential and commercial establishments[J]. Renew. Sust. Energ. Rev., 2008, 12(1): 39-64. |
3 | 陈思彤, 李微微, 王学科, 等 . 相变材料用于质子交换膜燃料电池的热管理[J]. 化工学报, 2016, 67: 1-6. |
Chen S T , Li W W , Wang X K , et al . Phase change materials are used for thermal management of proton exchange membrane fuel cells[J]. CIESC Journal, 2016, 67: 1-6. | |
4 | Tian Y , Liu Y , Zhang L , et al . Preparation and characterization of gelatin-sodium alginate/paraffin phase change microcapsules[J]. Colloids Surfaces A, 2019, 586: 124216. |
5 | 赖艳华, 吴涛, 魏露露, 等 . 基于相变材料的电子元件的散热性能[J]. 化工学报, 2014, 65: 157-161. |
Lai Y H , Wu T , Wei L L , et al . Heat dissipation performance of electronic components based on phase change materials[J]. CIESC Journal, 2014, 65: 157-161. | |
6 | Hao Z , Kai C , Ge Z , et al . Binary semiconductor In2Te3 for the application of phase-change memory device[J]. J. Mater. Sci., 2010, 45(13): 3569-3574. |
7 | Sharma A , Tyagi V V , Chen C R , et al . Review on thermal energy storage with phase change materials and applications[J]. Renew. Sust. Energ. Rev., 2009, (13): 318-345. |
8 | Farid M M , Khudhair A M , Razack S A K , et al . A review on phase change energy storage: materials and applications[J]. Energ. Convers. Manage., 2004, (45): 1597-1615. |
9 | Delagado M , Lazaro A , Mazo J , et al . Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications[J]. Renew. Sust. Energ. Rev., 2012, (16): 253-273. |
10 | 宋爱宝 . 微胶囊技术的研究和应用[J]. 今日科技, 1990, (6): 10-11. |
Song A B . Research and application of microcapsule technology[J]. Today Science & Technology, 1990, (6): 10-11. | |
11 | Li X , Sun L , Sui H , et al . A novel polymeric adsorbent embedded with phase change materials (PCMs) microcapsules: synthesis and application[J]. Nanomaterials, 2019, 9(5): 736. |
12 | Wang X , Chen Z , Xu W , et al . Capric acid phase change microcapsules modified with graphene oxide for energy storage[J]. J. Mater. Sci., 2019, 54(3): 14834-14844. |
13 | 钟小龙, 刘东, 胥海伦 . 微小管道内相变微胶囊悬浮液换热特性[J]. 化工学报, 2016, 67: 203-209. |
Zhong X L , Liu D , Xu H L . Heat transfer characteristics of micro-encapsulated phase change material suspension in mini-tubes[J]. CIESC Journal, 2016, 67: 203-209. | |
14 | 李杰, 刘红研, 汪树军, 等 . 密胺树脂硫磺微胶囊的制备及应用[J]. 化工学报, 2011, 62(6): 1716-1722. |
Li J , Liu H Y , Wang S J , et al . Preparation and application of melamine resin sulfur microcapsules[J]. CIESC Journal, 2011, 62(6): 1716-1722. | |
15 | 梅乐和, 姚善泾, 林东强, 等 . NaCS-PDADMAC生物微胶囊对苏云金杆菌的生物相容性[J]. 化工学报, 1999, 50(5): 592-597. |
Mei L H , Yao S J , Lin D Q , et al . Biocompatibility of NaCS-PDADMAC biological microcapsules for Bacillus thuringiensis [J]. Journal of Chemical Industry and Engineering(China), 1999, 50(5): 592-597. | |
16 | Shi J , Zhang S , Wang X , et al . Preparation and enzymatic application of flower-like hybrid microcapsules through a biomimetic mineralization approach[J]. J. Mater. Chem. B, 2014, 2(27): 4289-4296. |
17 | Hasanzadeh M , Shahidi M , Kazemipour M . Application of EIS and EN techniques to investigate the self-healing ability of coatings based on microcapsules filled with linseed oil and CeO2 nanoparticles[J]. Prog. Org. Coat., 2015, 80: 106-119. |
18 | 饶林刚, 贾莉斯, 陈颖, 等 . 分散剂对相变纳米胶囊悬浮液稳定性的影响[J]. 广东化工, 2017, (9): 67-71. |
Rao L G , Jia L S , Chen Y , et al . Effect of dispersant on suspension stability of phase change nano-capsules[J]. Guangdong Chemical Industry, 2017, (9): 67-71. | |
19 | Goel M , Roy S K , Sengupta S . Laminar forced convection heat transfer in microcapsulated phase change material suspensions[J]. Int. J. Heat Mass Trans., 1994, 37(4): 593-604. |
20 | Chen B , Wang X , Zeng R , et al . An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux[J]. Exp. Therm. Fluid Sci., 2008, 32(8): 1638-1646. |
21 | Choi E , Cho Y I , Lorsch H G . Forced convection heat transfer with phase-change-material slurries: turbulent flow in a circular tube[J]. Int. J. Heat Mass Tran., 1994, 37(2): 207-215. |
22 | Charunyakorn P , Sengupta S , Roy S K . Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts[J]. Int. J. Heat Mass Tran., 1991, 34: 819–833. |
23 | Zhang Y , Faghri A . Analysis of forced convection heat transfer in microencapsulated phase change material suspensions[J]. J. Thermophys. Heat Tran., 1995, 9: 727–732. |
24 | Roy S K , Avanic B L . Laminar forced convection heat transfer with phase change material suspensions[J]. Int. Commun. Heat Mass Tran., 2001, 28: 895–904. |
25 | Hu X , Zhang Y . Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux[J]. Int. J. Heat Mass Tran., 2002, 45: 3163-3172. |
26 | Sabbah R , Seyed-Yagoobi J , Al-Hallaj S . Heat transfer characteristics of liquid flow with micro-encapsulated phase change material: numerical study[J]. J. Heat Tran., 2011, 133(12): 121702. |
27 | Zeng R L , Wang X , Chen B J , et al . Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux[J]. Appl. Energ., 2009, 86(12): 2661-2670. |
28 | 方玉堂, 万伟军 . 潜热型功能热流体的研究进展[J].材料导报, 2009, 23(8): 108. |
Fang Y T , Wan W J . Research progress of latent heat functional thermal fluids[J]. Materials Reports, 2009, 23(8): 108. | |
29 | Wang X , Niu J , Li Y , et al . Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube [J]. Int. J. Heat Mass Tran., 2007, 50(13/14): 2480-2491. |
30 | 刘丽, 王亮, 王艺斐, 等 . 基液为丙醇/水的相变微胶囊悬浮液的制备、稳定性及热物性[J]. 功能材料, 2014, 45(1): 109-113. |
Liu L , Wang L , Wang Y F , et al . Preparation, stability and thermophysical properties of propanol/water phase change microcapsule suspension[J]. Journal of Function Materials, 2014, 45(1): 109-113. | |
31 | Alquaity A B S , Al‐Dini S A , Yilbas B S . Investigation into thermal performance of nanosized phase change material (PCM) in microchannel flow[J]. Int. J. Numer. Method. H., 2013, 23(2): 233-247. |
32 | Morsi S A , Alexander A J . An investigation of particle trajectories in two-phase flow systems[J]. J. Fluid Mech., 2006, 55(2): 193-208. |
33 | 岑可法, 樊建人 . 工程气固多相流动的理论及计算[M]. 杭州: 浙江大学出版社, 1990. |
Cen K F , Fan J R . Theory and Calculation of Engineering Gas-Solid Multiphase Flow[M]. Hangzhou: Zhejiang University Press, 1990. | |
34 | Guyer E C , Brownell D L . Handbook of Applied Thermal Design [M]. New York: McGraw-Hill, 1998. |
35 | Ma Z W , Zhang P . Modeling the heat transfer characteristics of flow melting of phase change material slurries in the circular tubes[J]. Int. J. Heat Mass Tran., 2013, 64(Complete): 874-881. |
36 | Ho C J , Huang J B , Tsai P S , et al . Water-based suspensions of Al2O3, nanoparticles and MEPCM particles on convection effectiveness in a circular tube[J]. Int. J. Therm. Sci., 2011, 50(5): 736-748. |
37 | Ho C J , Lin J F , Chiu S Y . Heat transfer of solid–liquid phase-change material suspensions in circular pipes: effects of wall conduction[J]. Numer. Heat Tr. A-Appl., 2004, 45(2): 171-190. |
38 | Ma F , Zhang P , Shi X J . Flow and heat transfer characteristics of micro-encapsulated phase change material slurry and energy transport evaluation[J]. Energy Procedia, 2017, 105: 4607-4614. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[7] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[8] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[11] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[12] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[13] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[14] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[15] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||