CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 1943-1963.DOI: 10.11949/0438-1157.20191302
• Reviews and monographs • Previous Articles Next Articles
Qiang ZHAO(),Hang GUO(),Fang YE,Chongfang MA
Received:
2019-10-31
Revised:
2019-12-27
Online:
2020-05-05
Published:
2020-05-05
Contact:
Hang GUO
通讯作者:
郭航
作者简介:
赵强(1994—),男,硕士研究生,基金资助:
CLC Number:
Qiang ZHAO, Hang GUO, Fang YE, Chongfang MA. State of the art of flow field plates of proton exchange membrane fuel cells[J]. CIESC Journal, 2020, 71(5): 1943-1963.
赵强, 郭航, 叶芳, 马重芳. 质子交换膜燃料电池流场板研究进展[J]. 化工学报, 2020, 71(5): 1943-1963.
Add to citation manager EndNote|Ris|BibTeX
1 | 曹殿学, 王贵领, 吕艳卓. 燃料电池系统[M]. 北京: 北京航空航天大学, 2009: 85-86. |
Cao D X, Wang G L, Lyu Y Z. Fuel Cell System [M]. Beijing: Beijing University of Aeronautics and Astronautics, 2009: 85-86. | |
2 | Manso A P, Marzo F F, Barranco J, et al. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review[J]. International Journal of Hydrogen Energy, 2012, 37(20): 15256-15287. |
3 | Liu J X, Guo H, Ye F, et al. Interfacial phenomena and heat transfer in proton exchange membrane fuel cells[J]. Interfacial Phenomena and Heat Transfer, 2015, 3(3): 259-301. |
4 | 季运康, 丁大增. 质子交换膜燃料电池双极板流场分析[J]. 佳木斯大学学报(自然科学版), 2018, (2): 236-240. |
Ji Y K, Ding D Z. Flow field analysis for proton exchange membrane fuel cell bipolar plate[J]. Journal of Jiamusi University(Natural Science Edition), 2018, (2): 236-240. | |
5 | 徐云飞, 艾勇诚, 陈骏, 等. 宽脊背流场对单体PEMFC性能的影响[J]. 电池, 2014, 44(2): 71-73. |
Xu Y F, Ai Y C, Chen J, et al. Effect of wide back flow-field on performance of single PEMFC[J]. Battery Bimonthly, 2014, 44(2): 71-73. | |
6 | Chowdhury M Z, Genc O, Toros S. Numerical optimization of channel to land width ratio for PEM fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10798-10809. |
7 | 陈磊, 郭朋彦, 张瑞珠, 等. 质子交换膜燃料电池流道尺寸对电池性能的影响[J]. 河南科技, 2018, (1): 141-142. |
Chen L, Guo P Y, Zhang R Z, et al. Effect of flow path size of proton exchange membrane fuel cell on battery performance[J]. Henan Science and Technology, 2018, (1): 141-142. | |
8 | Yoon Y G, Lee W Y, Park G G, et al. Effects of channel and rib widths of flow field plates on the performance of a PEMFC[J]. International Journal of Hydrogen Energy, 2005, 30(12): 1363-1366. |
9 | 熊济时. 质子交换膜燃料电池的流场结构优化与新型流场研究[D]. 武汉: 武汉理工大学, 2006. |
Xiong J S. Structural optimization and innovation of flow field in PEM fuel cell[D]. Wuhan: Wuhan University of Technology, 2006. | |
10 | 黄文雪. 阴极流场结构设计对质子交换膜燃料电池性能的影响[C]//2009年APC联合学术年会论文集. 上海汽车商用车技术中心, 2009: 155-161. |
Huang W X. Effects of cathode flow –field geometric structure design on performance of proton exchange membrane fuel cell[C]//Proceedings of the 2009 APC Joint Academic Annual Conference. Shanghai Automotive Commercial Vehicle Technology Center, 2009: 155-161. | |
11 | Carcadea E, Varlam M, Ingham D B, et al. The effects of cathode flow channel size and operating conditions on PEM fuel performance: a CFD modelling study and experimental demonstration[J]. International Journal of Energy Research, 2018, 42(8): 2789-2804. |
12 | 张海峰, 衣宝廉, 侯明, 等. 流场尺寸对质子交换膜燃料电池性能的影响[J]. 电源技术, 2004, 28(8): 494-497. |
Zhang H F, Yi B L, Hou M, et al. Effect of dimension of flow field on performance of PEMFC[J]. Chinese Journal of Power Sources, 2004, 28(8): 494-497. | |
13 | Cooper N, Smith T, Santamaria A D, et al. Experimental optimization of parallel and interdigitated PEMFC flow-field channel geometry[J]. International Journal of Hydrogen Energy, 2016, 41(2): 1213-1223. |
14 | 新源动力股份有限公司. 一种带有气体流场的质子交换膜燃料电池双极板: 201020155442. 0[P]. 2010-11-24. |
Xinyuan Power Co., Ltd. Proton exchange membrane fuel cell bipolar plate with gas flow field: 201020155442. 0[P]. 2010-11-24. | |
15 | 李文娟, 闵春华, 徐青, 等. 几何尺寸对楔形流场质子交换膜燃料电池性能的影响[C]//中国工程热物理学会2008年传热传质学学术会议论文集. 郑州, 2008. |
Li W J, Min C H, Xu Q, et al. Effect of geometrical size on performance of wedge flow field proton exchange membrane fuel cell[C]//Proceedings of the Chinese Society of Engineering Thermophysics 2008 Heat and Mass Transfer Conference. Zhengzhou, 2008. | |
16 | 张小娟, 张宁, 郦文忠. 渐变型流场对PEM燃料电池性能的影响[J]. 电源技术, 2010, 34(7): 664-666. |
Zhang X J, Zhang N, Li W Z. Effects of gradually-varied flow field on PEMFC performance[J]. Chinese Journal of Power Sources, 2010, 34(7): 664-666. | |
17 | Timurkutluk B, Chowdhury M Z. Numerical investigation of convergent and divergent parallel flow fields for PEMFCs[J]. Fuel Cells, 2018, 18(4): 441-448. |
18 | Song J, Guo H, Ye F, et al. Mass transfer and cell performance of a unitized regenerative fuel cell with nonuniform depth channel in oxygen-side flow field[J]. International Journal of Energy Research, 2019, 43(7): 2940-2962. |
19 | Ramin F, Sadeghifar H, Torkavannejad A. Flow field plates with trap-shape channels to enhance power density of polymer electrolyte membrane fuel cells[J]. International Journal of Heat and Mass Transfer, 2018, 129(1): 1151-1160. |
20 | 马利军, 林才顺, 薛方勤, 等. 质子交换膜燃料电池流场截面设计及三维模拟[J]. 湿法冶金, 2008, 27(1): 52-55. |
Ma L J, Lin C S, Xue F Q, et al. Flow field section design and 3D simulation of proton exchange membrane fuel cell[J]. Hydrometallurgy of China, 2008, 27(1): 52-55. | |
21 | 姜丙坤. 质子交换膜燃料电池双极板流场模型实验研究[J]. 船海工程, 2009, 38(3): 85-87. |
Jiang B K. The model experiment studies of flow field in bipolar plates of PEMFC[J]. Ship & Ocean Engineering, 2009, 38(3): 85-87. | |
22 | 熊济时, 肖金生, 潘牧, 等. 不同截面流场的质子交换膜燃料电池模拟[J]. 武汉理工大学学报, 2006, 28(e02): 553-557. |
Xiong J S, Xiao J S, Pan M, et al. Modeling of PEM fuel cell with different kind of section channels[J]. Journal of Wuhan University of Technology, 2006, 28(e02): 553-557. | |
23 | Wawdee P, Limtrakul S, Vatanatham T, et al. Water transport in a PEM fuel cell with slanted channel flow field plates[J]. International Journal of Hydrogen Energy, 2015, 40(9): 3739-3748. |
24 | Intelligent Energy Limited. Fuel cell fluid distribution plates: WO2007129030 [P]. 2007-11-15. |
25 | Zentrum für Sonnenenergie und Wasserstoff-Forschung Baden-Württemberg. Separator plate unit for a fuel cell and fuel cell comprising the same with enhanced performance: EP3054514(A1) [P]. 2016-08-10. |
26 | Winter G, Dadheech G V, Trabold T A, et al. Hydrophilic coating for fuel cell bipolar plate and methods of making the same: US7935381 [P]. 2011. |
27 | 陈莉. 一种质子交换膜燃料电池双极板结构、燃料电池电堆及其控制方法: 201710897738. 6[P]. 2018-01-05. |
Chen L. Proton exchange membrane fuel cell bipolar plate structure, fuel cell stack and control method: 201710897738. 6[P]. 2018-01-05. | |
28 | Heidary H, Kermani M J, Dabir B. Influences of bipolar plate channel blockages on PEM fuel cell performances[J]. Energy Conversion & Management, 2016, 124: 51-60. |
29 | Guo H, Chen H, Ye F, et al. Baffle shape effects on mass transfer and power loss of proton exchange membrane fuel cells with different baffled flow channels[J]. International Journal of Energy Research, 2019, 43(7): 2737-2755. |
30 | Chen H, Guo H, Ye F, et al. Mass transfer in proton exchange membrane fuel cells with baffled flow channels and a porous‐blocked baffled flow channel design[J]. International Journal of Energy Research, 2019, 43(7): 2910-2929. |
31 | 新源动力股份有限公司. 一种非对称结构的燃料电池阴阳极板及由其构成的电堆: 201711438496. 0[P]. 2018-04-27. |
Xinyuan Power Co., Ltd. Fuel cell cathode and anode plate with asymmetric structure and electric stack composed thereof: 201711438496. 0[P]. 2018-04-27. | |
32 | 熊承盛, 罗马吉, 陈奔, 等. 流道结构对燃料电池阴极氧气分布的影响[J]. 电源技术, 2018, 42(2): 230-232+282. |
Xiong C S, Luo M J, Chen B, et al. Effect of channel structure on oxygen distribution in cathode of fuel cells[J]. Chinese Journal of Power Sources, 2018, 42(2): 230-232+282. | |
33 | 王晶晶. PEMFC薄金属双极板设计与加工的技术研究[D]. 杭州: 浙江工业大学, 2012. |
Wang J J. Technical research of design and processing for the PEMFC thin metal bipolar plate[D]. Hangzhou: Zhejiang University of Technology, 2012. | |
34 | Liu H C, Yang W M, Tan J, et al. Numerical analysis of parallel flow fields improved by micro-distributor in proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2018, 176: 99-109. |
35 | 徐煜. 一种电极板及具有电极板的氢燃料电池: 201720421132. 0[P]. 2017-12-01. |
Xu Y. Electrode plate and hydrogen fuel cell with electrode plate: 201720421132. 0[P]. 2017-12-01. | |
36 | Ag Volkswagen. Bipolar plate and fuel cell: US20170033373(A1)[P]. 2017-2-2. |
37 | Intelligent Energy Limited. Fuel cell fluid distribution: CA2867645(A1)[P]. 2013-09-26. |
38 | Ford Motor Company, Ag Daimler. Flow field plate for reduced pressure drop in coolant: US8927170(B2)[P]. 2015-01-06. |
39 | Dabiri S, Hashemi M, Rahimi M, et al. Design of an innovative distributor to improve flow uniformity using cylindrical obstacles in header of a fuel cell[J]. Energy, 2018, 152: 719-731. |
40 | 江苏新源动力有限公司. 空气冷却型燃料电池堆金属双极板: 200920234853. 6[P]. 2010-06-02. |
Jiangsu Xinyuan Power Co., Ltd. Air-cooled fuel cell stack metal bipolar plate: 200920234853. 6[P]. 2010-06-02. | |
41 | Li T. Hydrogen fuel cell and system thereof, and method for dynamic variable humidity control: EP2704240[P]. 2017. |
42 | Corp Hydrogenics. Flow field plate for a fuel cell and fuel cell assembly incorporating the flow field plate: CA2522731(A1)[P]. 2004-11-25. |
43 | Qiu D K, Peng L F, Yi P Y, et al. Flow channel design for metallic bipolar plates in proton exchange membrane fuel cells: experiments[J]. Energy Conversion and Management, 2018, 174: 814-823. |
44 | Lim B H, Majlan E H, Daud W R W, et al. Numerical analysis of modified parallel flow field designs for fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9210-9218. |
45 | 李茂春. PEM燃料电池流场板及其成形工艺研究[D]. 天津: 天津大学, 2004. |
Li M C. Studies on flow field plate of PEM fuel cells and its molding techniques[D]. Tianjin: Tianjin University, 2004. | |
46 | Wang X D, Yan W M, Duan Y Y, et al. Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field[J]. Energy Conversion and Management, 2010, 51(5): 959-968. |
47 | Zhang X Y, Higier A, Zhang X, et al. Experimental studies of effect of land width in PEM fuel cells with serpentine flow field and carbon cloth[J]. Energies, 2019, 12(3): 471. |
48 | Liu H, Li P, Wang K. Optimization of PEM fuel cell flow channel dimensions—mathematic modeling analysis and experimental verification[J]. International Journal of Hydrogen Energy, 2013, 38(23): 9835-9846. |
49 | Chang D H, Wu S Y. The effects of channel depth on the performance of miniature proton exchange membrane fuel cells with serpentine-type flow fields[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11659-11667. |
50 | Han I S, Lim J, Jeong J, et al. Effect of serpentine flow-field designs on performance of PEMFC stacks for micro-CHP systems[J]. Renewable Energy, 2013, 54(6): 180-188. |
51 | Youcef K, Ahmed B, Ziari Y, et al. Channel geometric scales effect on performance and optimization for serpentine proton exchange membrane fuel cell (PEMFC)[C]//International Conference on Technologies & Materials for Renewable Energy. AIP Publishing LLC, 2017. |
52 | Chiu H C, Jang J H, Yan W M, et al. A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields[J]. Applied Energy, 2012, 96: 359-370. |
53 | 赵胜男. 质子交换膜燃料电池性能模拟及流场优化[D]. 沈阳: 沈阳建筑大学, 2013. |
Zhao S N. Simulation on performance curves and optimization of flow field of proton exchange membrane fuel cell[D]. Shenyang: Shenyang Jianzhu University, 2013. | |
54 | 林林, 冯黛丽, 王晓东, 等. 质子交换膜燃料电池流场设计最佳化的反问题求解方法[J]. 北京科技大学学报, 2010, 32(1): 105-111. |
Lin L, Feng D L, Wang X D, et al. Inverse problem method applied to flow field optimization of proton exchange membrane fuel cell[J]. Journal of University of Science and Technology Beijing, 2010, 32(1): 105-111. | |
55 | Freire L S, Antolini E, Linardi M, et al. Influence of operational parameters on the performance of PEMFCs with serpentine flow field channels having different (rectangular and trapezoidal) cross-section shape[J]. International Journal of Hydrogen Energy, 2014, 39(23): 12052-12060. |
56 | Shen J, Tu Z K, Siew H C. Enhancement of mass transfer in a proton exchange membrane fuel cell with blockage in the flow channel[J]. Applied Thermal Engineering, 2019, 149: 1408-1418. |
57 | Ebrahimzadeh A A, Khazaee I, Fasihfar A. Numerical investigation of obstacle s effect on the performance of proton-exchange membrane fuel cell: studying the shape of obstacles[J]. Heliyon, 2019, 5(5): e01764. |
58 | 王传宾. 车用质子交换膜燃料电池流场的数值模拟及优化改进[D]. 重庆: 重庆大学, 2008. |
Wang C B. Numerical simulation and optimization of flow field of proton exchange membrane fuel cell for vehicles[D]. Chongqing: Chongqing University, 2008. | |
59 | Kuo J K, Chen C K. Evaluating the enhanced performance of a novel wave-like form gas flow channel in the PEMFC using the field synergy principle[J]. Journal of Power Sources, 2006, 162(2): 1122-1129. |
60 | Yan X H, Guan C, Zhang Y, et al. Flow field design with 3D geometry for proton exchange membrane fuel cells[J]. Applied Thermal Engineering, 2019, 147: 1107-1114. |
61 | 上海交通大学. 质子交换膜燃料电池双极板多通道蛇行流场结构: 200910045410. 7[P]. 2009-06-24. |
Shanghai Jiao Tong University. Proton exchange membrane fuel cell bipolar plate multi-channel meandering flow field structure: 200910045410. 7[P]. 2009-06-24. | |
62 | Belchor P M, Forte M M C, Carpenter D E O S. Parallel serpentine-baffle flow field design for water management in a proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(16): 11900-11911. |
63 | Wang X D, Duan Y Y, Yan W M. Novel serpentine-baffle flow field design for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2007, 173(1): 210-221. |
64 | Utc Power Corp, Toyota Jidosha Kk, Ag Audi. Solid flow field plate with end turns: US2013101923(A1)[P]. 2013-04-25. |
65 | Chang S W, Chin C W, Yu C H, et al. Flow field plate of a fuel cell with airflow guiding gaskets: US2010248085(A1)[P]. 2010-09-30. |
66 | Liu H C, Tan J, Cheng L S, et al. Enhanced water removal performance of a slope turn in the serpentine flow channel for proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2018, 176: 227-235. |
67 | Jaruwasupant N, Khunatorn Y. Effects of difference flow channel designs on proton exchange membrane fuel cell using 3-D model[J]. Energy Procedia, 2011, 9: 326-337. |
68 | Company Ltd BYD. Flow field plates for fuel cells: US2007009781[P]. 2007-01-11. |
69 | Canfield F L. Fuel cell bi-cooler flow plate: US6274262[P]. 2001. |
70 | Abdulla S, Patnaikuni V S. Detailed analysis of polymer electrolyte membrane fuel cell with enhanced cross‐flow split serpentine flow field design[J]. Department of Chemical Engineering, 2019, 43(7): 2806-2820. |
71 | Min C H, He J, Wang K, et al. A comprehensive analysis of secondary flow effects on the performance of PEMFCs with modified serpentine flow fields[J]. Energy Conversion and Management, 2019, 180: 1217-1224. |
72 | Guo H, Wang M H, Liu J X, et al. Temperature distribution on anodic surface of membrane electrode assembly in proton exchange membrane fuel cell with interdigitated flow bed[J]. Journal of Power Sources, 2015, 273: 775-783. |
73 | 孙红, 陈浩, 赵胜男, 等. 脊宽对交指型PEM燃料电池性能的影响[J]. 沈阳建筑大学学报(自然科学版), 2013, 29(3): 555-560. |
Sun H, Chen H, Zhao S N, et al. The ridge width influence on the interdigital PEM fuel cell performance[J]. Journal of Shenyang Jianzhu University (Natural Science), 2013, 29(3): 555-560. | |
74 | 北京工业大学. 质子交换膜燃料电池非对称交错流道流场板: 200510085225. 2[P]. 2005-11-30. |
Beijing University of Technology. Proton exchange membrane fuel cell asymmetric staggered flow channel flow field plate: 200510085225. 2[P]. 2005-11-30. | |
75 | Zhang X Y, Chen S Z, Xia Z X, et al. Performance enhancement of PEM fuel cells with narrower outlet channel in interdigitated flow field[J]. Energy Procedia, 2019, 158: 1412-1417. |
76 | 王科. 质子交换膜燃料电池双极板流场的研究[D]. 南京: 南京航空航天大学, 2007. |
Wang K. Research on flow field on bipolar plates for proton exchange membrane fuel cell[D]. Nanjing: Nanjing Aerospace University, 2007. | |
77 | Univ Ramot At Tel Aviv Ltd. Bipolar plates and regenerative fuel cell stacks including same: AU2014203796A1[P]. 2014-07-31. |
78 | Thitakamol V, Therdthianwong A, Therdthianwong S. Mid-baffle interdigitated flow fields for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(5): 3614-3622. |
79 | Ku H W, Wu H W. Influences of operational factors on proton exchange membrane fuel cell performance with modified interdigitated flow field design[J]. Journal of Power Sources, 2013, 232: 199-208. |
80 | 上海恒劲动力科技有限公司. 燃料电池的双极板及其燃料电池: 201020281964. 5[P]. 2011-05-25. |
Shanghai Hengjin Power Technology Co., Ltd. Bipolar plate of fuel cell and its fuel cell: 201020281964. 5[P]. 2011-05-25. | |
81 | 上海科用机电设备有限公司. 一种带有凸起结构的燃料电池极板: 201010171010. 3[P]. 2011-11-15. |
Shanghai Keyong Electromechanical Equipment Co., Ltd. A fuel cell plate with a raised structure: 201010171010. 3[P]. 2011-11-15. | |
82 | Rosenberg A, Noach R, Givon M, et al. Perforated flow distributor plate: EP1982375[P]. 2011. |
83 | 中国科学院大连化学物理研究所. 一种用于质子交换膜燃料电池的流场分配板: 02106202. 1[P]. 2003-10-15. |
Dalian Institute of Chemical Physics, Chinese Academy of Sciences. A flow field distribution plate for a proton exchange membrane fuel cell: 02106202. 1[P]. 2003-10-15. | |
84 | Gen Electronic Company. Flow field design for high fuel utilization fuel cells: EP1653543[P]. 2010-10-20. |
85 | Atyabi S A, Afshari E. Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side[J]. Journal of Cleaner Production, 2019, 214: 738-748. |
86 | 中国石油大学(华东. 一种混合型结构流场的燃料电池双极板: 201720377399. 4[P]. 2017-12-01. |
China University of Petroleum. A fuel cell bipolar plate with a hybrid structure flow field: 201720377399. 4[P]. 2017-12-01. | |
87 | 沈阳建筑大学. 一种质子交换膜燃料电池流场结构: 201120120663. 9[P]. 2011-12-21. |
Shenyang Jianzhu University. Flow field structure of a proton exchange membrane fuel cell: 201120120663. 9[P]. 2011-12-21. | |
88 | 浙江工业大学. 一种主动排水质子交换膜燃料电池双极板的流场: 201510655018. X[P]. 2016-01-13. |
Zhejiang University of Technology. Flow field of an active drainage proton exchange membrane fuel cell bipolar plate: 201510655018. X[P]. 2016-01-13. | |
89 | 李昌平. 基于分支结构的PEMFC双极板流场结构数值模拟与优化[D]. 武汉: 武汉理工大学, 2011. |
Li C P. Numerical simulation and optimization of flow field for the PEMFC based on bifurcation structures[D]. Wuhan: Wuhan University of Technology, 2011. | |
90 | 武汉理工大学. 基于树叶仿生结构的质子交换膜燃料电池双极板: 201110210593. 0[P]. 2011-12-28. |
Wuhan University of Technology. Bipolar plate of PEMFC based on bionic leat structure: 201110210593. 0[P]. 2011-12-28. | |
91 | Damian-Ascencio C E, Saldaña-Robles Adriana, Hernandez-Guerrero A, et al. Numerical modeling of a proton exchange membrane fuel cell with tree-like flow field channels based on an entropy generation analysis[J]. Energy, 2017, 133: 306-316. |
92 | 苏宇静. 基于树状分形流场的质子交换膜燃料电池性能分析[D]. 杭州: 浙江工业大学, 2015. |
Su Y J. Performance analysis of proton exchange membrane fuel cell with fractal tree-1ike flow field[D]. Hangzhou: Zhejiang University of Technology, 2015. | |
93 | 乔运乾. 基于树叶形态的PEMFC双极板结构设计与优化[D]. 武汉: 武汉理工大学, 2011. |
Qiao Y Q. Bipolar plate design and optimization based on novel biometric method in PEMFC[D]. Wuhan: Wuhan University of Technology, 2011. | |
94 | 吴明格. 燃料电池双极板仿生流场主动排水机理与表面改性研究[D]. 杭州: 浙江工业大学, 2016. |
Wu M G. Study on bionic flow field active drainage mechanism and surface modification of proton exchange membrane fuel cell bipolar plate[D]. Hangzhou: Zhejiang University of Technology, 2016. | |
95 | Kloess J P, Wang X, Liu J, et al. Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 188(1): 132-140. |
96 | Asadzade M, Shamloo A. Design and simulation of a novel bipolar plate based on lung-shaped bio-inspired flow pattern for PEM fuel cell: a lung-shaped bio-inspired fuel cell[J]. International Journal of Energy Research, 2017, 41(2): 1730-1739. |
97 | Turpin M C, Boff J C, Bilton B M. Flow field plate: WO03081692[P]. 2003-10-02. |
98 | Niu Z Q, Fan L H, Bao Z M, et al. Numerical investigation of innovative 3D cathode flow channel in proton exchange membrane fuel cell [J]. International Journal of Energy Research, 2018, 42(10): 3328-3338. |
99 | Zhang G, Xie B, Bao Z, et al. Multi‐phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field[J]. International Journal of Energy Research, 2018, 42(15): 4697-4709. |
100 | Dhahad H A, Alfayydh E M, Fahim K H. Effect of flow field design and channel/header ratio on velocity distribution: an experimental approach[J]. Thermal Science and Engineering Progress, 2018, 8: 118-129. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[7] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||