CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3518-3526.DOI: 10.11949/0438-1157.20200185
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Haitao ZHU1,2,3(),Bo YANG2,3,Yaqin WU2,3,Congjie GAO1
Received:
2020-02-25
Revised:
2020-05-26
Online:
2020-08-05
Published:
2020-08-05
Contact:
Haitao ZHU
通讯作者:
祝海涛
作者简介:
祝海涛(1990—),男,博士,高级工程师,基金资助:
CLC Number:
Haitao ZHU, Bo YANG, Yaqin WU, Congjie GAO. Numerical simulation of ion transfer during electrodialysis desalination process[J]. CIESC Journal, 2020, 71(8): 3518-3526.
祝海涛, 杨波, 吴雅琴, 高从堦. 电渗析脱盐过程离子传递现象的数值模拟[J]. 化工学报, 2020, 71(8): 3518-3526.
Add to citation manager EndNote|Ris|BibTeX
Parameter | Value① |
---|---|
total voltage drop (Vt) | 0.2 V |
inlet concentration (c0) | 500 eq/m3 |
inlet flow velocity (vinlet) | 0.03 m/s |
ion exchange capacity of CEM② | 1.4 meq/g |
ion exchange capacity of AEM③ | 1.0 meq/g |
membrane conductivity (σm) | 0.2 S/m |
length of eletrodialysis unit (L) | 10 cm |
width of compartments (Wc) | 0.7 mm |
thickness of membranes (δm) | 0.1 mm |
temperature (T) | 298.15 K |
Table 1 Parameters for numerical modeling
Parameter | Value① |
---|---|
total voltage drop (Vt) | 0.2 V |
inlet concentration (c0) | 500 eq/m3 |
inlet flow velocity (vinlet) | 0.03 m/s |
ion exchange capacity of CEM② | 1.4 meq/g |
ion exchange capacity of AEM③ | 1.0 meq/g |
membrane conductivity (σm) | 0.2 S/m |
length of eletrodialysis unit (L) | 10 cm |
width of compartments (Wc) | 0.7 mm |
thickness of membranes (δm) | 0.1 mm |
temperature (T) | 298.15 K |
脱盐时间/min | 计算值/(mol/m3) | 实验值/(mol/m3) |
---|---|---|
0 | 500.0 | 500.0 |
8 | 430.4 | 437.0 |
16 | 360.8 | 367.5 |
24 | 291.2 | 296.9 |
32 | 221.6 | 229.6 |
40 | 152.0 | 157.8 |
Table 2 Concentration of NaCl solution in the diluate
脱盐时间/min | 计算值/(mol/m3) | 实验值/(mol/m3) |
---|---|---|
0 | 500.0 | 500.0 |
8 | 430.4 | 437.0 |
16 | 360.8 | 367.5 |
24 | 291.2 | 296.9 |
32 | 221.6 | 229.6 |
40 | 152.0 | 157.8 |
施加电压/V | 跨膜电压降/V | |
---|---|---|
NaCl | CaCl2 | |
0.2 | 0.057 | 0.062 |
0.3 | 0.085 | 0.093 |
0.4 | 0.111 | 0.121 |
Table 3 Potential drop across the cation-exchange membrane at different voltages
施加电压/V | 跨膜电压降/V | |
---|---|---|
NaCl | CaCl2 | |
0.2 | 0.057 | 0.062 |
0.3 | 0.085 | 0.093 |
0.4 | 0.111 | 0.121 |
离子 | 扩散系数Di/(m2/s) |
---|---|
Na+ | 1.35×10-9 |
Ca2+ | 7×10-10 |
K+ | 1.95×10-9 |
Cl- | 2.03×10-9 |
Table 4 Diffusion coefficient of ions in the solution[27-28]
离子 | 扩散系数Di/(m2/s) |
---|---|
Na+ | 1.35×10-9 |
Ca2+ | 7×10-10 |
K+ | 1.95×10-9 |
Cl- | 2.03×10-9 |
1 | Ortiz J M, Sotoca J A, Expósito E, et al. Brackish water desalination by electrodialysis: batch recirculation operation modeling[J]. Journal of Membrane Science, 2005, 252(1/2): 65-75. |
2 | Deghles A, Kurt U. Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process[J]. Chemical Engineering and Processing: Process Intensification, 2016, 104: 43-50. |
3 | Galier S, Balmann H R. Demineralization of glucose solutions by electrodialysis: influence of the ionic composition on the mass transfer and process performances[J]. The Canadian Journal of Chemical Engineering, 2015, 93(2): 378-385. |
4 | Lafi R, Gzara L, Lajimi R H, et al. Treatment of textile wastewater by a hybrid ultrafiltration/electrodialysis process[J]. Chemical Engineering and Processing: Process Intensification, 2018, 132: 105-113. |
5 | Readi O M K, Mengers H J, Wiratha W, et al. On the isolation of single acidic amino acids for biorefinery applications using electrodialysis[J]. Journal of Membrane Science, 2011, 384(1/2): 166-175. |
6 | Tanaka Y. A computer simulation of continuous ion exchange membrane electrodialysis for desalination of saline water[J]. Desalination, 2009, 249(2): 809-821. |
7 | Campione A, Gurreri L, Ciofalo M, et al. Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 2018, 434: 121-160. |
8 | Rohman F S, Aziz N. Mathematical model of ion transport in electrodialysis process[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2008, 3(1/2/3): 3-8. |
9 | Ma L, Gutierrez L, Vanoppen M, et al. Transport of uncharged organics in ion-exchange membranes: experimental validation of the solution-diffusion model[J]. Journal of Membrane Science, 2018, 564: 773-781. |
10 | Rohman F S, Othman M R, Aziz N. Modeling of batch electrodialysis for hydrochloric acid recovery[J]. Chemical Engineering Journal, 2010, 162(2): 466-479. |
11 | Enciso R, Delgadillo J A, Domínguez O, et al. Analysis and validation of the hydrodynamics of an electrodialysis cell using computational fluid dynamics[J]. Desalination, 2017, 408: 127-132. |
12 | Kozmai A E, Nikonenko V V, Pismenskaya N D, et al. Diffusion layer thickness in a membrane system as determined from voltammetric and chronopotentiometric data[J]. Russian Journal of Electrochemistry, 2011, 46(12): 1383-1389. |
13 | Tanaka Y. Concentration polarization in ion-exchange membrane electrodialysis. The events arising in an unforced flowing solution in a desalting cell[J]. Journal of Membrane Science, 2004, 244(1/2): 1-16. |
14 | Gnusin N P. Mathematical model of electrodiffusion transfer through a diffusion layer-heterogeneous ion-exchange membrane system[J]. Russian Journal of Electrochemistry, 2003, 39(10): 1053-1057. |
15 | Lebedev K A, Nikonenko V V, Zabolotskii V I, et al. Ion transport in a three-layered ion-exchange membrane: a mathematical model[J]. Russian Journal of Electrochemistry, 2002, 38(7): 688-697. |
16 | Manzanares J A, Murphy W D, Mafé S, et al. Numerical simulation of the nonequilibrium diffuse double layer in ion-exchange membranes[J]. The Journal of Physical Chemistry, 1993, 97(32): 8524-8530. |
17 | Casas S, Bonet N, Aladjem C, et al. Modelling sodium chloride concentration from seawater reverse osmosis brine by electrodialysis: preliminary results[J]. Solvent Extraction and Ion Exchange, 2011, 29(3): 488-508. |
18 | Jiang C, Wang Q, Li Y, et al. Water electro-transport with hydrated cations in electrodialysis[J]. Desalination, 2015, 365: 204-212. |
19 | Ghorbani A, Ghassemi A, Andersen P K, et al. A prediction model of mass transfer through an electrodialysis cell[J]. Desalination and Water Treatment, 2016, 57(47): 22290-22303. |
20 | Zourmand Z, Faridirad F, Kasiri N, et al. Mass transfer modeling of desalination through an electrodialysis cell[J]. Desalination, 2015, 359: 41-51. |
21 | Bawornruttanaboonya K, Devahastin S, Yoovidhya T, et al. Mathematical modeling of transport phenomena and quality changes of fish sauce undergoing electrodialysis desalination[J]. Journal of Food Engineering, 2015, 159: 76-85. |
22 | Urtenov M A, Kirillova E V, Seidova N M, et al. Decoupling of the Nernst-Planck and poisson equations. Application to a membrane system at overlimiting currents[J]. The Journal of Physical Chemistry B, 2007, 111(51): 14208-14222. |
23 | Guzmán-Garcia A G, Pintauro P N, Verbrugge M W, et al. Development of space-charge transport model for ion-exchange membranes[J]. AIChE Journal, 1990, 36(7): 1061-1074. |
24 | Gurreri L, Battaglia G, Tamburini A, et al. Multi-physical modelling of reverse electrodialysis[J]. Desalination, 2017, 423: 52-64. |
25 | Fíla V, Bouzek K. A mathematical model of multiple ion transport across an ion-selective membrane under current load conditions[J]. Journal of Applied Electrochemistry, 2003, 33(8): 675-684. |
26 | Shaposhnik V A, Kuzminykh V A, Grigorchuk O V, et al. Analytical model of laminar flow electrodialysis with ion-exchange membranes[J]. Journal of Membrane Science, 1997, 133(1): 27-37. |
27 | 张维润. 电渗析工程学[M]. 北京: 科学出版社, 1995: 82. |
Zhang W R. Electrodialysis Engineering[M]. Beijing: Science Press, 1995: 82. | |
28 | Moon P, Sandí G, Stevens D, et al. Computational modeling of ionic transport in continuous and batch electrodialysis[J]. Separation Science and Technology, 2004, 39(11): 2531-2555. |
29 | Tanaka Y. Regularity in ion-exchange membrane characteristics and concentration of sea water[J]. Journal of Membrane Science, 1999, 163(2): 277-287. |
30 | Suwal S, Doyen A, Bazinet L. Characterization of protein, peptide and amino acid fouling on ion-exchange and filtration membranes: review of current and recently developed methods[J]. Journal of Membrane Science, 2015, 496: 267-283. |
31 | Melnikov S, Kolot D, Nosova E, et al. Peculiarities of transport-structural parameters of ion-exchange membranes in solutions containing anions of carboxylic acids[J]. Journal of Membrane Science, 2018, 557: 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||