CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3625-3632.DOI: 10.11949/0438-1157.20200357
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Zhipeng LI(),Shengli NIU(),Kuihua HAN,Chunmei LU
Received:
2020-04-07
Revised:
2020-05-07
Online:
2020-08-05
Published:
2020-08-05
Contact:
Shengli NIU
通讯作者:
牛胜利
作者简介:
厉志鹏(1995—),男,硕士研究生,基金资助:
CLC Number:
Zhipeng LI, Shengli NIU, Kuihua HAN, Chunmei LU. Molecular simulation of the effect of doping modification on the adsorption properties of calcium-aluminum-based composites ester exchange catalysts[J]. CIESC Journal, 2020, 71(8): 3625-3632.
厉志鹏, 牛胜利, 韩奎华, 路春美. 掺杂改性对钙铝基复合物酯交换催化剂吸附性能影响的分子模拟[J]. 化工学报, 2020, 71(8): 3625-3632.
分子 | 键 | 键长/ nm | |
---|---|---|---|
本文 | 文献[ | ||
甲醇 | O—H | 0.097 | 0.096 |
C—O | 0.143 | 0.143 | |
C—H1/2/3 | 0.109/0.110/0.110 | 0.110/0.110/0.110 | |
乙酸甲酯 | C—O1/2 | 0.144/0.136 | 0.143/0.136 |
C—C | 0.150 | 0.150 | |
CO | 0.122 | 0.122 | |
C—H1/2/3 | 0.109/0.109/0.109 | 0.109/0.109/0.109 | |
C—H4/5/6 | 0.109/0.110/0.110 | 0.109/0.109/0.109 |
Table 1 Bond length of methanol and methyl acetate
分子 | 键 | 键长/ nm | |
---|---|---|---|
本文 | 文献[ | ||
甲醇 | O—H | 0.097 | 0.096 |
C—O | 0.143 | 0.143 | |
C—H1/2/3 | 0.109/0.110/0.110 | 0.110/0.110/0.110 | |
乙酸甲酯 | C—O1/2 | 0.144/0.136 | 0.143/0.136 |
C—C | 0.150 | 0.150 | |
CO | 0.122 | 0.122 | |
C—H1/2/3 | 0.109/0.109/0.109 | 0.109/0.109/0.109 | |
C—H4/5/6 | 0.109/0.110/0.110 | 0.109/0.109/0.109 |
掺杂方式 | 掺杂结合能(kJ/mol) | |||
---|---|---|---|---|
Ca, M=0 | Ca, M=Zn | Ca, M=La | Ca, M=Mg | |
Ca 取代 Al3c-1, M 取代 Al5c-1 | 215.03 215.03 | 969.33 | 151.23 | 652.17 |
Ca 取代 Al3c-1, M 取代 Al4c-1 | 982.20 | 284.34 | 688.67 | |
Ca 取代 Al4c-1, M 取代 Al3c-1 | 294.06 294.06 | 1037.07 | 310.07 | 728.05 |
Ca 取代 Al4c-1, M 取代 Al5c-1 | 893.98 | 228.42 | 721.49 | |
Ca 取代 Al5c-1, M 取代 Al4c-1 | 214.50 214.50 | 970.12 | 242.60 | 676.59 |
Ca 取代 Al5c-1, M 取代 Al3c-1 | 960.15 | 213.98 | 643.25 |
Table 2 Dopant incorporation energy of catalysts surface under different conditions
掺杂方式 | 掺杂结合能(kJ/mol) | |||
---|---|---|---|---|
Ca, M=0 | Ca, M=Zn | Ca, M=La | Ca, M=Mg | |
Ca 取代 Al3c-1, M 取代 Al5c-1 | 215.03 215.03 | 969.33 | 151.23 | 652.17 |
Ca 取代 Al3c-1, M 取代 Al4c-1 | 982.20 | 284.34 | 688.67 | |
Ca 取代 Al4c-1, M 取代 Al3c-1 | 294.06 294.06 | 1037.07 | 310.07 | 728.05 |
Ca 取代 Al4c-1, M 取代 Al5c-1 | 893.98 | 228.42 | 721.49 | |
Ca 取代 Al5c-1, M 取代 Al4c-1 | 214.50 214.50 | 970.12 | 242.60 | 676.59 |
Ca 取代 Al5c-1, M 取代 Al3c-1 | 960.15 | 213.98 | 643.25 |
Fig.3 Top view of doped catalyst structure surfaces (O atoms are red, Al atoms are pink, Ca atoms are green, Mg atoms are yellow, Zn atoms are black and La atoms are blue)
吸附位置 | H—O键长/nm | H—M键长/nm | 吸附能/ (kJ/mol) |
---|---|---|---|
钙催化剂表面 | 0.140 | 0.107 | -137.051 |
钙锌催化剂表面 | 0.151 | 0.103 | -164.094 |
钙镧催化剂表面 | 0.149 | 0.104 | -136.001 |
钙镁催化剂表面 | 0.148 | 0.105 | -158.318 |
Table 3 Bond length and adsorption energy of methanol absorbed on catalyst surfaces
吸附位置 | H—O键长/nm | H—M键长/nm | 吸附能/ (kJ/mol) |
---|---|---|---|
钙催化剂表面 | 0.140 | 0.107 | -137.051 |
钙锌催化剂表面 | 0.151 | 0.103 | -164.094 |
钙镧催化剂表面 | 0.149 | 0.104 | -136.001 |
钙镁催化剂表面 | 0.148 | 0.105 | -158.318 |
吸附位置 | CO键长/nm | 吸附能/(kJ/mol) |
---|---|---|
钙催化剂表面 | 0.123 | -120.640 |
钙锌催化剂表面 | 0.123 | -135.102 |
钙镧催化剂表面 | 0.128 | -149.694 |
钙镁催化剂表面 | 0.122 | -100.801 |
Table 4 Bond length and adsorption energy of methyl acetate absorbed on Ca-M catalyst surfaces
吸附位置 | CO键长/nm | 吸附能/(kJ/mol) |
---|---|---|
钙催化剂表面 | 0.123 | -120.640 |
钙锌催化剂表面 | 0.123 | -135.102 |
钙镧催化剂表面 | 0.128 | -149.694 |
钙镁催化剂表面 | 0.122 | -100.801 |
吸附位置 | H—O键长/nm | 吸附能/(kJ/mol) |
---|---|---|
钙铝催化剂表面 | 0.097 | -105.020 |
钙铝锌催化剂表面 | 0.098 | -122.873 |
钙铝镧催化剂表面 | 0.098 | -147.816 |
钙铝镁催化剂表面 | 0.098 | -259.662 |
Table 5 Bond length and adsorption energy of methanol absorbed on Ca-Al-M catalyst surfaces
吸附位置 | H—O键长/nm | 吸附能/(kJ/mol) |
---|---|---|
钙铝催化剂表面 | 0.097 | -105.020 |
钙铝锌催化剂表面 | 0.098 | -122.873 |
钙铝镧催化剂表面 | 0.098 | -147.816 |
钙铝镁催化剂表面 | 0.098 | -259.662 |
吸附位置 | Mulliken电荷/e | ||||||
---|---|---|---|---|---|---|---|
H(O-H) | O | C | H1 | H2 | H3 | 总计 | |
纯甲醇 | 0.253 | -0.507 | 0.145 | 0.029 | 0.029 | 0.050 | 0 |
钙铝催化剂表面 | 0.327 | -0.601 | -0.018 | 0.105 | 0.115 | 0.119 | 0.047 |
钙铝锌催化剂表面 | 0.379 | -0.623 | -0.029 | 0.100 | 0.110 | 0.126 | 0.063 |
钙铝镧催化剂表面 | 0.405 | -0.635 | -0.024 | 0.108 | 0.113 | 0.124 | 0.091 |
钙铝镁催化剂表面 | 0.353 | -0.596 | -0.051 | 0.111 | 0.115 | 0.121 | 0.053 |
Table 6 Mulliken atomic charge populations for methanol adsorption on Ca-Al-M catalyst surfaces
吸附位置 | Mulliken电荷/e | ||||||
---|---|---|---|---|---|---|---|
H(O-H) | O | C | H1 | H2 | H3 | 总计 | |
纯甲醇 | 0.253 | -0.507 | 0.145 | 0.029 | 0.029 | 0.050 | 0 |
钙铝催化剂表面 | 0.327 | -0.601 | -0.018 | 0.105 | 0.115 | 0.119 | 0.047 |
钙铝锌催化剂表面 | 0.379 | -0.623 | -0.029 | 0.100 | 0.110 | 0.126 | 0.063 |
钙铝镧催化剂表面 | 0.405 | -0.635 | -0.024 | 0.108 | 0.113 | 0.124 | 0.091 |
钙铝镁催化剂表面 | 0.353 | -0.596 | -0.051 | 0.111 | 0.115 | 0.121 | 0.053 |
1 | Niu S L, Zhang X Y, Ning Y L, et al. Dolomite incorporated with cerium to enhance the stability in catalyzing transesterification for biodiesel production[J]. Renewable Energy, 2020, 154: 107-116. |
2 | Pavlovic S M, Marinkovic D M, Kostic M D, et al. A CaO/zeolite-based catalyst obtained from waste chicken eggshell and coal fly ash for biodiesel production[J]. Fuel, 2020, 267: 117171. |
3 | Isabela C M, Stefan G S, Vasile P. Theoretical aspects of methyl acetate and methanol activation on MgO(100) and (501) catalyst surfaces with application in FAME production[J]. Applied Surface Science, 2017, 392: 920-928. |
4 | Isabela C M, Stefan G S, Vasile P. Effect of Ca and Sr in MgO(100) on the activation of methanol and methyl acetate[J]. Catalysis Today, 2018, 306: 207-214. |
5 | Ran W, Lin S H, Rempel G L, et al. Synthesis and properties of UV curable waterborne polyurethane acrylate nanocomposite films based on the surface modification of gamma-Al2O3[J]. Polymer Korea, 2017, 41(3): 385-393. |
6 | Vivian V T, Thaisa A M, Elisabete M A. Cu and Ni catalysts supported on γ-Al2O3 and SiO2 assessed in glycerol steam reforming reaction[J]. Journal of the Brazilian Chemical Society, 2015, 26(1):22-31. |
7 | Bercic G, Levec J. Intrinsic and global reaction-rate of methanol dehydration over gamma-Al2O3 pellets[J]. Ind. Eng. Chem. Res., 1992, 31: 1035-1040. |
8 | 张弛成, 洪业, 陈立芳, 等. 负载型钯团簇上氢分子吸附和解离吸附的密度泛函理论[J]. 化工学报, 2017, 68(2): 694-701. |
Zhang C C, Hong Y, Chen L F, et al. Density functional theory of molecular and dissociative adsorption of hydrogen on supported palladium clusters[J]. CIESC Journal, 2017, 68(2): 694-701. | |
9 | Nunes A L B, Castilhos F. Chemical interesterification of soybean oil and methyl acetate to FAME using CaO as catalyst[J]. Fuel, 2020, 267: 117264. |
10 | 胡雪玲, 韦藤幼, 吴炼, 等. 改性膨润土催化麻疯树油酯交换反应动力学及生物柴油纯化[J]. 化工学报, 2015, 66(8): 3113-3119. |
Hu X L, Wei T Y, Wu L, et al. Kinetics of jatropha oil transesterification catalyzed by modified bentonite and biodiesel purification[J]. CIESC Journal, 2015, 66(8): 3113-3119. | |
11 | Zheng L, Xia S, Lu X, et al. Transesterification of glycerol with dimethyl carbonate over calcined Ca-Al hydrocalumite[J]. Chinese Journal of Catalysis, 2015, 36(10): 1759-1765. |
12 | Tang S K, Wang L P, Zhang Y, et al. Study on preparation of Ca/Al/Fe3O4 magnetic composite solid catalyst and its application in biodiesel transesterification[J]. Fuel Processing Technology, 2012, 95: 84-89. |
13 | Ngamcharussrivichai C, Totarat P, Bunyakiat K. Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil[J]. Applied Catalysis A General, 2008, 341(1/2): 77-85. |
14 | Zhao S, Niu S L, Yu H W, et al. Experimental investigation on biodiesel production through transesterification promoted by the La-dolomite catalyst[J]. Fuel, 2019, 257: 116092. |
15 | 颜姝丽, 鲁厚芳, 姜利寒, 等. 固体碱催化剂用于油脂甲醇酯交换反应制备生物柴油[J]. 化工学报, 2007, 58(10): 2506-2512. |
Yan S L, Lu H F, Jiang L H, et al. Solid base catalysts for transesterification of oil with methanol to produce biodiesel[J]. Journal of Chemical Industry and Engineering (China),2007, 58(10): 2506-2512. | |
16 | 李晓红, 杨云峰. Ca-Zn-Al-O固体碱的制备、表征及其油脂醇解催化活性[J]. 中国油脂, 2016, 41(12): 65-68. |
Li X H, Yang Y F. Preparation and characterization of Ca-Zn-Al-O solid base and its catalytic activity in oil alcoholysis[J]. China Oils and Fats, 2016, 41(12): 65-68. | |
17 | Liao Y, Li F, Dai X, et al. Solid base catalysts derived from Ca-M-Al (M = Mg, La, Ce, Y) layered double hydroxides for dimethyl carbonate synthesis by transesterification of methanol with propylene carbonate[J]. Chinese Journal of Catalysis, 2017, 38(11): 1860-1869. |
18 | Eliane D, Jane E, Reem H, et al. Biodiesel production from refined sunflower oil over Ca-Mg-Al catalysts: effect of the composition and the thermal treatment[J]. Renewable Energy, 2020,146: 1242-1248. |
19 | Liu Z M, Li J H, Seong I W, et al. Density functional theory studies of NO and NO2 adsorption on Al2O3 supported SnO2 cluster[J]. Catalysis Letters, 2013, 143: 912-918. |
20 | 臧丽莉. Al2O3表面吸附小分子的第一性原理研究[D]. 福州: 福州大学, 2011. |
Zang L L. First-principles studies on the adsorptions of small molecules on the Al2O3 surfaces[D]. Fuzhou: Fuzhou University, 2011. | |
21 | Digne M, Sautet P, Raybaud P, et al. Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces[J]. Journal of Catalysis, 2004, 226(1): 54-68. |
22 | Gao H W. DFT study of the adsorption properties of single Pt, Pd, Ag, In and Sn on the γ-Al2O3(110) surface[J]. Chemical Physics Letters, 2016, 657: 11-17. |
23 | Song Z, Wang B, Yu J, et al. Adsorption properties of CO, H2 and CH4 over Pd/gamma-Al2O3 catalyst: a density functional study[J]. Applied Surface Science, 2016, 387(30): 341-350. |
24 | 薛继龙, 方镭, 罗伟, 等. Cu-Pt-Au三元合金催化水煤气变换反应的密度泛函研究[J]. 燃料化学学报, 2019, 47(6): 688-696. |
Xue J L, Fang L, Luo W, et al. Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 688-696. | |
25 | 梁志永, 覃吴, 石司默, 等. 化学链燃烧中Co掺杂改性Fe2O3(104)载氧体反应特性[J]. 工程科学与技术, 2019, 51(6): 28-35. |
Liang Z Y, Qin W, Shi S M, et al. Modification of Co-doping on reaction properties of Fe2O3(104) oxygen carrier during chemical looping combustion[J]. Advanced Engineering Sciences, 2019, 51(6): 28-35. | |
26 | 杨涛, 曹蕃, 刘利军, 等. 掺杂Ce/Zr对γ-Al2O3(110)表面的影响[J]. 燃烧科学与技术, 2017, 23(6): 542-546. |
Yang T, Cao F, Liu L J, et al. Impact of Ce/Zr doping on γ-Al2O3(110) surface[J]. Journal of Combustion Science and Technology, 2017, 23(6): 542-546. | |
27 | 石磊, 于悦, 王吉宇, 等. 酯交换法合成碳酸甲乙酯研究进展[J]. 燃料化学学报, 2019, 47(12): 1504-1521. |
Shi L, Yu Y, Wang J Y, et al. Recent advances of studies in ethyl methyl carbonate synthesis via transesterification process[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1504-1521. | |
28 | 付希. CaO-ZnO固体碱催化剂的制备及其催化大豆油酯交换反应的性能[J]. 石油化工, 2017, 46(5): 552-557. |
Fu X. Preparation of CaO-ZnO solid base catalysts and their catalytic performances for transesterification of soybean oil[J]. Petrochemical Technology, 2017, 46(5): 552-557. | |
29 | Yan S, Kim M, Mohan S, et al. Effects of preparative parameters on the structure and performance of Ca–La metal oxide catalysts for oil transesterification[J]. Applied Catalysis A General, 2010, 373(1/2): 104-111. |
30 | 王广欣, 颜姝丽, 周重文, 等. 用于生物柴油的钙镁催化剂的制备及其活性评价[J]. 中国油脂, 2005, 30(10): 64-67. |
Wang G X, Yan S L, Zhou C W, et al. Preparation and activity measurement of CaO/MgO catalyst for biodiesel fuel production[J]. China Oils and Fats, 2005, 30(10): 64-67. | |
31 | 万艳春, 王玉军, 骆广生. 并流滴加法制备大孔容纤维状γ-氧化铝[J]. 化工学报, 2018, 69(11): 4840-4847. |
Wan Y C, Wang Y J, Luo G S. Preparation of fibrous γ-alumina with large pore volume via co-current dropwise addition method[J]. CIESC Journal, 2018, 69(11): 4840-4847. | |
32 | Norhasyimah M K, Wan Azelee W A B, Rusmidah A. Catalytic optimization and physicochemical studies over Zn/Ca/Al2O3 catalyst for transesterification of low grade cooking oil[J]. Energy Conversion and Management, 2017, 137: 113-120. |
33 | Syamsuddin Y, Murat M N, Hameed B H. Transesterification of jatropha oil with dimethyl carbonate to produce fatty acid methyl ester over reusable Ca-La-Al mixed-oxide catalyst[J]. Energy Conversion and Management, 2015, 106: 1356-1361. |
34 | Gao L, Teng G, Lv J, et al. Biodiesel synthesis catalyzed by the KF/Ca-Mg-Al hydrotalcite base catalyst[J]. Energy & Fuels, 2010, 24(1): 646-651. |
35 | Liu R Q. Adsorption and dissociation of H2O on Au(111) surface: a DFT study[J]. Computational and Theoretical Chemistry, 2013, 1019: 141-145. |
36 | 孟庆森. 甲醇氧化羰基合成碳酸二甲酯反应机理的DFT研究[D]. 天津: 天津大学, 2013. |
Meng Q S. Reaction mechanism for methanol oxycarbonylation to form dimethyl carbonate: a DFT approach[D]. Tianjin: Tianjin University, 2013. |
[1] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[2] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[3] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[4] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[9] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[10] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[11] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[12] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[13] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[14] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[15] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 489
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 452
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||