CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 229-246.DOI: 10.11949/0438-1157.20201090
• Reviews and monographs • Previous Articles Next Articles
JIANG Long(),WANG Kaijie,KONG Qing,LU Sheng,CHEN Xiaoqiang()
Received:
2020-08-03
Revised:
2020-10-23
Online:
2021-01-05
Published:
2021-01-05
Contact:
CHEN Xiaoqiang
通讯作者:
陈小强
作者简介:
江龙(1989—),男,博士研究生,基金资助:
CLC Number:
JIANG Long, WANG Kaijie, KONG Qing, LU Sheng, CHEN Xiaoqiang. Research progress of chemiluminescence probes based on adamantane-dioxetane[J]. CIESC Journal, 2021, 72(1): 229-246.
江龙, 王开杰, 孔晴, 陆晟, 陈小强. 基于金刚烷-二氧杂环丁烷化学发光探针的研究进展[J]. 化工学报, 2021, 72(1): 229-246.
Fig.6 Chemiluminescence mechanism of probe 8 (a) and cell permeability confocal fluorescence imaging and cell imaging for detection of 1O2 of probe 9(b)
1 | White E H, Bursey M M. Chemiluminescence of luminol and related hydrazides: the light emission step [J]. Journal of The American Chemical Society, 1964, 86(5): 941-942. |
2 | Kamidate T, Kinkou T, Watanabe H. Role of amino thiols in luminol chemiluminescence coupled with copper(Ⅱ)-catalysed oxidation of cysteine and glutathione [J]. Journal of Bioluminescence and Chemiluminescence, 1996, 11(3): 123-129. |
3 | Li H, Du J X. Sensitive chemiluminescence determination of three thiol compounds based on Cu(Ⅱ)-catalyzing luminol reaction in the absence of an oxidant [J]. Analytical Letters, 2009, 42(13): 2131-2140. |
4 | King R, Miskelly G M. The inhibition by amines and amino acids of bleach-induced luminol chemiluminescence during forensic screening for blood [J]. Talanta, 2005, 67(2): 345-353. |
5 | Du J X, Li Y H, Lu J R. Investigation on the chemiluminescence reaction of luminol-H2O2-S2-/R-SH system [J]. Analytica Chimica Acta, 2001, 448(1/2): 79-83. |
6 | Kalkar C D, Raut V M, Gaikwad V B. Lyoluminescence of luminol in aqueous amines [J]. Journal of Radioanalytical and Nuclear Chemistry, 1994, 177(2): 345-355. |
7 | Dong Y P, Wang J, Peng Y, et al. Chemiluminescence resonance energy transfer between CdS quantum dots and lucigenin and its sensing application [J]. Journal of Luminescence, 2017, 181: 433-438. |
8 | Gao W Y, Qi L M, Liu Z Y, et al. Efficient lucigenin/thiourea dioxide chemiluminescence system and its application for selective and sensitive dopamine detection [J]. Sensors and Actuators B: Chemical, 2017, 238: 468-472. |
9 | Hart R C, Taaffe L R. The use of acridinium ester-labelled streptavidin in immunoassays [J]. Journal of Immunological Methods, 1987, 101(1): 91-96. |
10 | Peng K, Liu S S, Lv F T, et al. Wireless charging electrochemiluminescence system for ionic channel manipulation in living cells [J]. ACS Applied Materials & Interfaces, 2020, 12(22): 24655-24661. |
11 | Guardigli M, Pasini P, Mirasoli M, et al. Chemiluminescent high-throughput microassay for evaluation of acetylcholinesterase inhibitors [J]. Analytica Chimica Acta, 2005, 535(1/2): 139-144. |
12 | Zargoosh K, Chaichi M J, Asghari S, et al. Study of chemiluminescence from reaction of bis(2,4,6-trichlorophenyl)oxalate,hydrogen peroxide and diethyl-2-(cyclohexylamino)-5-[(e)-2-phenyl-1-ethenyl]-3,4-furandi arboxylate as a novel fluorescer [J]. Journal of the Iranian Chemical Society, 2010, 7(2): 376-383. |
13 | Cui H, Zhang Z F, Shi M J, et al. Light emission of gold nanoparticles induced by the reaction of bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide [J]. Analytical Chemistry, 2005, 77(19): 6402-6406. |
14 | Smellie I A, Aldred J K, Bower B, et al. Alternative hydrogen peroxide sources for peroxyoxalate “glowstick” chemiluminescence demonstrations [J]. Journal of Chemical Education, 2016, 94(1): 112-114. |
15 | Nakano K, Honda T, Yamasaki K, et al. Carbon quantum dots as fluorescent component in peroxyoxalate chemiluminescence for hydrogen peroxide determination [J]. Bulletin of the Chemical Society of Japan, 2018, 91(7): 1128-1130. |
16 | Tsaplev Y B. Chemiluminescence determination of hydrogen peroxide [J]. Journal of Analytical Chemistry, 2012, 67(6): 506-514. |
17 | Samadi-Maybodi A, Akhoondi R, Chaichi M J. Studies of new peroxyoxalate-H2O2 chemiluminescence system using quinoxaline derivatives as green fluorophores [J]. Journal of Fluorescence, 2010, 20(3): 671-679. |
18 | Nozaki O, Iwaeda T, Kato V. Amines for detection of dopamine by generation of hydrogen peroxide and peroxyoxalate chemiluminescence [J]. Journal of Bioluminescence and Chemiluminescence, 1996, 11(6): 309-313. |
19 | Zong C, Wu J, Zang Y, et al. Resonance energy transfer and electron-hole annihilation induced chemiluminescence of quantum dots for amplified immunoassay [J]. Chemical Communications, 2018, 54(84): 11861-11864. |
20 | Yang Y L, Wang S F, Liu L F, et al. NIR-Ⅱ chemiluminescence molecular sensor for in-vivo high contrast inflammation imaging [J]. Angewandte Chemie International Edition, 2020, 59(42): 18380-18385. |
21 | Albrecht S, Brandl H, Bohm W D, et al. Determination of urinary oxalate and porphyrins by peroxyoxalate chemiluminescence [J]. Analytica Chimica Acta, 1991, 255(2): 413-416. |
22 | Schaap A P, Gagnon S D. Chemiluminescence from a phenoxide-substituted 1,2-dioxetane: a model for firefly bioluminescence [J]. Journal of the American Chemical Society, 1982, 104(12): 3504-3506. |
23 | Schaap A P, Sandison M D, Handley R S. Chemical and enzymatic triggering of 1,2-dioxetanes (3): Alkaline phosphatase-catalyzed chemiluminescence from an aryl phosphate-substituted dioxetane [J]. Tetrahedron Letters, 1987, 28(11): 1159-1162. |
24 | Schaap A P, Handley R S, Gin B P. Chemical and enzymatic triggering of 1,2-dioxetanes (1): Aryl esterase-catalyzed chemiluminescence from a naphthyl acetate-substituted dioxetane [J]. Tetrahedron Letters, 1987, 28(9): 935-938. |
25 | Schaap A P, Chen T S, Handley R S, et al. Chemical and enzymatic triggering of 1,2-dioxbtanbs (2): Fluoride-induced chemiluminescence from tert-butyldimethylsilyloxy-substituted dioxetanes [J]. Tetrahedron Letters, 1987, 28(11): 1155-1158. |
26 | Bronstein I, Edwards B, Voyta J C. 1,2-Dioxetanes: novel chemiluminescent enzyme substrates. Applications to immunoassays [J]. Journal of Bioluminescence and Chemiluminescence, 1989, 4(1): 99-111. |
27 | Schaap A P, Akhavan H, Romano L J. Chemiluminescent substrates for alkaline phosphatase: application to ultrasensitive enzyme-linked immunoassays and DNA probes [J]. Clinical Chemistry, 1989, 35(9): 1863-1864. |
28 | Hummelen J C, Luider T M, Wynberg H. Stable 1,2-dioxetanes as labels for thermochemiluminescent immunoassay[J]. Methods Enzymol., 1986, 133: 531-557. |
29 | Palmer C, Wolfe S H, Dietetic A. Position of the American dietetic association: the impact of fluoride on health[J]. Journal of the American Dietetic Association, 2005, 105(10): 1620-1628. |
30 | Kleerekoper M, Face M D. The role of fluoride in the prevention of osteoporosis[J]. Endocrinology and Metabolism Clinics of North America, 1998, 27(2): 441-452. |
31 | Smith G E. Fluoride, teeth and bone [J]. The Medical Journal of Australia, 1985, 143(7): 283-286. |
32 | Ayoob S, Gupta A K. Fluoride in drinking water: a review on the status and stress effects [J]. Critical Reviews in Environmental Science and Technology, 2006, 36(6): 433-487. |
33 | Upadhyay K K, Mishra R K, Kumar V, et al. A coumarin based ICT probe for fluoride in aqueous medium with its real application [J]. Talanta, 2010, 82(1): 312-318. |
34 | Turan I S, Akkaya E U. Chemiluminescence sensing of fluoride ions using a self-immolative amplifier [J]. Organic Letters, 2014, 16(6): 1680-1683. |
35 | Turan I S, Seven O, Ayan S, et al. Amplified chemiluminescence signal for sensing fluoride ions [J]. ACS Omega, 2017, 2(7): 3291-3295. |
36 | Gu B W, Dong C, Shen R W, et al. Dioxetane-based chemiluminescent probe for fluoride ion-sensing in aqueous solution and living imaging [J]. Sensors and Actuators B: Chemical, 2019, 301: 127111. |
37 | Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis [J]. Archives of Biochemistry and Biophysics, 2003, 417(1): 3-11. |
38 | Okon I S, Zou M H. Mitochondrial ROS and cancer drug resistance: implications for therapy [J]. Pharmacological Research, 2015, 100: 170-174. |
39 | Fu J, Shao Y, Wang L, et al. Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem [J]. Nanoscale, 2015, 7(16): 7275-7283. |
40 | Voeikov V L, Vilenskaya N D, Ha D M, et al. The stable nonequilibrium state of bicarbonate aqueous systems [J]. Russian Journal of Physical Chemistry A, 2012, 86(9): 1407-1415. |
41 | Salamifar S E, Lai R Y. Use of combined scanning electrochemical and fluorescence microscopy for detection of reactive oxygen species in prostate cancer cells [J]. Analytical Chemistry, 2013, 85(20): 9417-9421. |
42 | Zielonka J, Zielonka M, Sikora A, et al. Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses [J]. Journal of Biological Chemistry, 2012, 287(5): 2984-2995. |
43 | Cao J, Lopez R, Thacker J M, et al. Chemiluminescent probes for imaging H2S in living animals [J]. Chemical Science, 2015, 6(3): 1979-1985. |
44 | Hananya N, Green O, Blau R, et al. A highly efficient chemiluminescence probe for the detection of singlet oxygen in living cells [J]. Angewandte Chemie International Edition, 2017, 56(39): 11793-11796. |
45 | Seven O, Sozmen F, Turan I S. Self immolative dioxetane based chemiluminescent probe for H2O2 detection [J]. Sensors and Actuators B: Chemical, 2017, 239: 1318-1324. |
46 | Ye S, Hu J J, Yang D. Tandem Payne/Dakin reaction: a new strategy for hydrogen peroxide detection and molecular imaging [J]. Angewandte Chemie International Edition, 2018, 57(32): 10173-10177. |
47 | Ye S, Hananya N, Green O, et al. A highly selective and sensitive chemiluminescent probe for real-time monitoring of hydrogen peroxide in cells and animals [J]. Angewandte Chemie International Edition, 2020, 59(34): 14326-14330. |
48 | Wijdeven R H, Neefjes J, Ovaa H. How chemistry supports cell biology: the chemical toolbox at your service [J]. Trends in Cell Biol., 2014, 24(12): 751-760. |
49 | Peng L, Gao M, Cai X L, et al. A fluorescent light-up probe based on AIE and ESIPT processes for beta-galactosidase activity detection and visualization in living cells [J]. Journal of Materials Chemistry B, 2015, 3(47): 9168-9172. |
50 | Xue C, Lei Y J, Zhang S C, et al. Cyanine-derived “turn-on” fluorescent probe for imaging nitroreductase in hypoxic tumor cells [J]. Analytical Methods, 2015, 7(24): 10125-10128. |
51 | Yuan J, Xu Y Q, Zhou N N, et al. A highly selective turn-on fluorescent probe based on semi-cyanine for the detection of nitroreductase and hypoxic tumor cell imaging [J]. RSC Advances, 2014, 4(99): 56207-56210. |
52 | Xu J, Sun S B, Li Q, et al. A rapid response “turn-on” fluorescent probe for nitroreductase detection and its application in hypoxic tumor cell imaging [J]. Analyst, 2015, 140(2): 574-581. |
53 | Ryu J H, Kim S A, Koo H, et al. Cathepsin B-sensitive nanoprobe for in vivo tumor diagnosis [J]. Journal of Materials Chemistry, 2011, 21(44): 17631-17634. |
54 | Gnaim S, Scomparin A, Das S, et al. Direct real-time monitoring of prodrug activation by chemiluminescence [J]. Angewandte Chemie International Edition, 2018, 57(29): 9033-9037. |
55 | Eilon-Shaffer T, Roth-Konforti M, Eldar-Boock A, et al. Ortho-chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescent probes for in vitro and in vivo imaging [J]. Organic & Biomolecular Chemistry, 2018, 16(10): 1708-1712. |
56 | Gnaim S, Scomparin A, Eldar-Boock A, et al. Light emission enhancement by supramolecular complexation of chemiluminescence probes designed for bioimaging [J]. Chemical Science, 2019, 10(10): 2945-2955. |
57 | Cheng P H, Miao Q Q, Li J C, et al. Unimolecular chemo-fluoro-luminescent reporter for crosstalk-free duplex imaging of hepatotoxicity [J]. Journal of the American Chemical Society, 2019, 141(27): 10581-10584. |
58 | Das S, Ihssen J, Wick L, et al. Chemiluminescent carbapenem-based molecular probe for detection of carbapenemase activity in live bacteria [J]. Chemistry, 2020, 26(16): 3647-3652. |
59 | Sun J Y, Hu Z, Wang R H, et al. A highly sensitive chemiluminescent probe for detecting nitroreductase and imaging in living animals [J]. Analytical Chemistry, 2019, 91(2): 1384-1390. |
60 | Cao J, Campbell J, Liu L, et al. In vivo chemiluminescent imaging agents for nitroreductase and tissue oxygenation [J]. Analytical Chemistry, 2016, 88(9): 4995-5002. |
61 | Roth-Konforti M E, Bauer C R, Shabat D. Unprecedented sensitivity in a probe for monitoring cathepsin B: chemiluminescence microscopy cell-imaging of a natively expressed enzyme [J]. Angewandte Chemie International Edition, 2017, 56(49): 15633-15638. |
62 | Zhang Y T, Yan C X, Wang C, et al. A sequential dual-lock strategy for photoactivatable chemiluminescent probes enabling bright duplex optical imaging [J]. Angewandte Chemie International Edition, 2020, 59(23): 9059-9066. |
63 | Ni X, Zhang X Y, Duan X C, et al. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery [J]. Nano Letters, 2019, 19(1): 318-330. |
64 | Roda A, Di Fusco M, Quintavalla A, et al. Dioxetane-doped silica nanoparticles as ultrasensitive reagentless thermochemiluminescent labels for bioanalytics [J]. Analytical Chemistry, 2012, 84(22): 9913-9919. |
65 | Andronico L A, Chen L, Mirasoli M, et al. Thermochemiluminescent semiconducting polymer dots as sensitive nanoprobes for reagentless immunoassay [J]. Nanoscale, 2018, 10(29): 14012-14021. |
66 | Chen Y, Sijbesma R P. Dioxetanes as mechanoluminescent probes in thermoplastic elastomers [J]. Macromolecules, 2014, 47(12): 3797-3805. |
67 | Miao Y G. Mechanism analysis on the increased stress softening of Mullins effect for rubber matrix composites [J]. Plastics, Rubber and Composites, 2019, 48(5): 226-233. |
68 | Varol H S, Rivastava A, Kumar S, et al. Bridging chains mediate nonlinear mechanics of polymer nanocomposites under cyclic deformation [J]. Polymer, 2020, 200: 122529-122538. |
69 | Fu W, Wang L, Huang J N, et al. Mechanical properties and Mullins effect in natural rubber reinforced by grafted carbon black [J]. Advances in Polymer Technology, 2019, 2019: 1-11. |
70 | Wan H X, Gao K, Li S, et al. Chemical bond scission and physical slippage in the Mullins effect and fatigue behavior of elastomers [J]. Macromolecules, 2019, 52(11): 4209-4221. |
71 | Zhong D M, Xiang Y H, Yin T H, et al. A physically-based damage model for soft elastomeric materials with anisotropic Mullins effect [J]. International Journal of Solids and Structures, 2019, 176/177: 121-134. |
72 | Li Z Y, Xu X L, Xia X X, et al. Energy dissipation accompanying Mullins effect of nitrile butadiene rubber/carbon black nanocomposites [J]. Polymer, 2019, 171: 106-114. |
73 | Clough J M, Creton C, Craig S L, et al. Covalent bond scission in the Mullins effect of a filled elastomer: real-time visualization with mechanoluminescence [J]. Advanced Functional Materials, 2016, 26(48): 9063-9074. |
74 | Cui D, Li J C, Zhao X H, et al. Semiconducting polymer nanoreporters for near-infrared chemiluminescence imaging of immunoactivation [J]. Advanced Materials, 2020, 32(6): 1906314-1906321. |
[1] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[2] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[3] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[4] | Muzi LI, Guowei JIA, Yanlong ZHAO, Xin ZHANG, Jianrong LI. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture [J]. CIESC Journal, 2023, 74(1): 365-379. |
[5] | Junying YAN, Huangying WANG, Ruirui LI, Rong FU, Chenxiao JIANG, Yaoming WANG, Tongwen XU. Selective electrodialysis: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 224-236. |
[6] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
[7] | Ruyi TANG, Hanqian PAN, Xiajun ZHENG, Guangxin ZHANG, Xingping WANG, Xili CUI, Huabin XING. Structural characterization of Z-type perfluoropolyether [J]. CIESC Journal, 2023, 74(1): 479-486. |
[8] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[9] | Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide [J]. CIESC Journal, 2022, 73(8): 3406-3416. |
[10] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
[11] | Hongxin YANG, Xingya LI, Liang GE, Tongwen XU. Preparation of mono-/divalent anion permselective membranes with piperidinium-type long side-chain [J]. CIESC Journal, 2022, 73(8): 3739-3748. |
[12] | Chenyu SU, Ying YANG, Xingfu SONG. Selective electro-oxidation of bromide ion in potassium-extracted brine from rock salt mines [J]. CIESC Journal, 2022, 73(7): 3007-3017. |
[13] | Jiangwei ZHU, Pengfei MA, Xiao DU, Yanyan YANG, Xiaogang HAO, Shanxia LUO. Specific electronically controlled separation of phosphate anions based on variable valence NiFe-LDH/rGO [J]. CIESC Journal, 2022, 73(7): 3057-3067. |
[14] | Yanran ZHU, Liang GE, Xingya LI, Tongwen XU. Construction and application of three-phase ionic exchange membranes [J]. CIESC Journal, 2022, 73(6): 2397-2414. |
[15] | Shanshan YANG, Yuyang YAO, Yundi DONG, Zhipeng XU, Shangshang GAO, Huimin RUAN, Jiangnan SHEN. Preparation and performance of ion exchange membrane with K+ selectivity based on dibenzo-18-crown-6 modification [J]. CIESC Journal, 2022, 73(4): 1781-1793. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 706
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 960
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||