CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 2006-2017.DOI: 10.11949/0438-1157.20200916
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
QI Cong(),LI Ke'ao,LI Chunyang
Received:
2020-07-07
Revised:
2020-12-11
Online:
2021-04-05
Published:
2021-04-05
Contact:
QI Cong
通讯作者:
齐聪
作者简介:
齐聪(1983—),男,博士,副教授,基金资助:
CLC Number:
QI Cong, LI Ke'ao, LI Chunyang. Influence of micro-rib structures on thermal performance of nanofluids flowing around circular cylinders[J]. CIESC Journal, 2021, 72(4): 2006-2017.
齐聪, 李可傲, 李春阳. 微肋结构对纳米流体绕流圆柱热性能的影响[J]. 化工学报, 2021, 72(4): 2006-2017.
种类 | ρ/(kg·m-3) | cp/(J·kg-1·K-1) | μ/(Pa·s) | λ/(W·m-1·K-1) |
---|---|---|---|---|
去离子水 | 997.1 | 4179 | 0.001004 | 0.6130 |
TiO2 纳米颗粒 | 4250 | 686.2 | ─ | 8.9538 |
0.1%TiO2纳米流体 | 997.9 | 4178.2 | 0.0010046 | 0.6134 |
0.2%TiO2纳米流体 | 998.6 | 4177.4 | 0.0010052 | 0.6137 |
0.3%TiO2纳米流体 | 999.4 | 4176.5 | 0.0010058 | 0.6141 |
0.4%TiO2纳米流体 | 1000.2 | 4175.7 | 0.0010064 | 0.6144 |
0.5%TiO2纳米流体 | 1000.9 | 4174.9 | 0.001007 | 0.6148 |
Table 1 Physical properties of nanofluids
种类 | ρ/(kg·m-3) | cp/(J·kg-1·K-1) | μ/(Pa·s) | λ/(W·m-1·K-1) |
---|---|---|---|---|
去离子水 | 997.1 | 4179 | 0.001004 | 0.6130 |
TiO2 纳米颗粒 | 4250 | 686.2 | ─ | 8.9538 |
0.1%TiO2纳米流体 | 997.9 | 4178.2 | 0.0010046 | 0.6134 |
0.2%TiO2纳米流体 | 998.6 | 4177.4 | 0.0010052 | 0.6137 |
0.3%TiO2纳米流体 | 999.4 | 4176.5 | 0.0010058 | 0.6141 |
0.4%TiO2纳米流体 | 1000.2 | 4175.7 | 0.0010064 | 0.6144 |
0.5%TiO2纳米流体 | 1000.9 | 4174.9 | 0.001007 | 0.6148 |
仪器 | 制造商 | 特性 |
---|---|---|
热电偶 | OMEGA | 型号:T型; 测温范围:0~200℃; 精度:±0.1% |
数据采集器 | Agilent | 型号:34970; 通道数目:22个; 精度:±0.004% |
低温恒温槽 | 上海衡平 | 型号:DC-2030A; 可调温度范围:-20~100℃; 精度:±0.02℃ |
直流电源 | MAISHENG | 输入电压:AC220V±10%; 工作环境:-10~70℃; 精度:±5% |
流量计 | 双环 | 型号:LZB-6; 精度:±1% |
压差传感器 | 重庆伟岸 | 测量范围:60~40 MPa; 精度:±0.25% |
Table 2 Detail information of experimental instrument
仪器 | 制造商 | 特性 |
---|---|---|
热电偶 | OMEGA | 型号:T型; 测温范围:0~200℃; 精度:±0.1% |
数据采集器 | Agilent | 型号:34970; 通道数目:22个; 精度:±0.004% |
低温恒温槽 | 上海衡平 | 型号:DC-2030A; 可调温度范围:-20~100℃; 精度:±0.02℃ |
直流电源 | MAISHENG | 输入电压:AC220V±10%; 工作环境:-10~70℃; 精度:±5% |
流量计 | 双环 | 型号:LZB-6; 精度:±1% |
压差传感器 | 重庆伟岸 | 测量范围:60~40 MPa; 精度:±0.25% |
1 | Cai W H, Lai T, Dai W L, et al. A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids[J]. Journal of Power Sources, 2014, 255: 170-178. |
2 | Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. Developments and Applications of Non-Newtonian Flows, 1995, 66: 99-105. |
3 | 陈巨辉, 韩坤, 王帅, 等. 基于反扰动非平衡分子动力学的纳米流体导热增强机理研究[J]. 化工学报, 2019, 70(6): 2147-2152. |
Chen J H, Han K, Wang S, et al. Study on thermal conductive enhancement mechanism of nanofluid based on anti-disturbance non-equilibrium molecular dynamics[J]. CIESC Journal, 2019, 70(6): 2147-2152. | |
4 | 吴晗, 杨峻. 多壁碳纳米管-水纳米流体导热机理及重力热管实验研究[J]. 化工学报, 2017, 68(6): 2315-2320. |
Wu H, Yang J. Thermal conduction mechanism of multi-walled carbon nanotubes-deionized water nanofluids and experimental research in gravity heat pipe[J]. CIESC Journal, 2017, 68(6): 2315-2320. | |
5 | 阳倦成, 徐鸿鹏, 李凤臣. 黏弹性流体基纳米流体流变学特性[J]. 化工学报, 2014, 65: 199-205. |
Yang J C, Xu H P, Li F C. Rheological properties of vicoelastic fluid based nanofluid[J]. CIESC Journal, 2014, 65: 199-205. | |
6 | 徐俊波, 汪宇莹, 杨超. 纳米受限流体的结构及流体动力学特性[J]. 化工学报, 2016, 67(1): 209-217. |
Xu J B, Wang Y Y, Yang C. Structure and hydrodynamics characteristics of fluids under nano-confinement[J]. CIESC Journal, 2016, 67(1): 209-217. | |
7 | Chen M J, He Y R, Hu Y W, et al. Local heating control of plasmonic nanoparticles for different incident lights and nanoparticles[J]. Plasmonics, 2019, 14(6): 1893-1902. |
8 | 胡彦伟, 程珙, 李浩然, 等. 化学沉淀法制备纳米SiO2颗粒[J]. 化工学报, 2016, 67: 379-383. |
Hu Y W, Cheng G, Li H R, et al. Synthesis of SiO2 nanoparticles by chemical precipitation[J]. CIESC Journal, 2016, 67: 379-383. | |
9 | Bing N C, Yang J, Zhang Y C, et al. 3D graphene nanofluids with high photothermal conversion and thermal transportation properties[J]. Sustainable Energy & Fuels, 2020, 4(3): 1208-1215. |
10 | 崔腾飞, 宣益民, 李强. 基于格子Boltzmann方法模拟纳米流体强化传质过程[J]. 化工学报, 2012, 63: 41-46. |
Cui T F, Xuan Y M, Li Q. Simulation of enhancement of mass transfer in nano-fluids by lattice Boltzmann method[J]. CIESC Journal, 2012, 63: 41-46. | |
11 | 李强, 宣益民. 纳米流体热导率的测量[J]. 化工学报, 2003, 54(1): 42-46. |
Li Q, Xuan Y M. Measurement of thermal conductivities of nanofluids[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(1): 42-46. | |
12 | Li H R, Wang L, He Y R, et al. Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids[J]. Applied Thermal Engineering, 2015, 88: 363-368. |
13 | Esfe M H, Afrand M. Mathematical and artificial brain structure-based modeling of heat conductivity of water based nanofluid enriched by double wall carbon nanotubes[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 540: 120766. |
14 | 凌智勇, 邹涛, 丁建宁, 等. 纳米流体黏度特性[J]. 化工学报, 2012, 63(5): 1409-1414. |
Ling Z Y, Zou T, Ding J N, et al. Shear viscosity of nanofluids mixture[J]. CIESC Journal, 2012, 63(5): 1409-1414. | |
15 | 彭小飞, 俞小莉, 夏立峰, 等. 纳米流体有效热导率预测[J]. 化工学报, 2007, 58(2): 299-303. |
Peng X F, Yu X L, Xia L F, et al. Prediction of effective thermal conductivity of nanofluids[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(2): 299-303. | |
16 | 杨雪飞, 刘振华. 一种由表面改性纳米颗粒制备的新型纳米流体[J]. 化工学报, 2010, 61(11): 2902-2905. |
Yang X F, Liu Z H. A new kind of nanofluid prepared with functionalized nanoparticles[J]. CIESC Journal, 2010, 61(11): 2902-2905. | |
17 | Asadi A, Asadi M, Rezaniakolaei A, et al. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation[J]. International Journal of Heat and Mass Transfer, 2018, 117: 474-486. |
18 | Asadi M, Asadi A, Aberoumand S. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid[J]. International Journal of Refrigeration, 2018, 89: 83-92. |
19 | Asadi A. A guideline towards easing the decision-making process in selecting an effective nanofluid as a heat transfer fluid[J]. Energy Conversion and Management, 2018, 175: 1-10. |
20 | Sajid M U, Ali H M. Thermal conductivity of hybrid nanofluids: a critical review[J]. International Journal of Heat and Mass Transfer, 2018, 126: 211-234. |
21 | Afrand M, Najafabadi K N, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines[J]. Applied Thermal Engineering, 2016, 102: 45-54. |
22 | Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation[J]. Applied Thermal Engineering, 2017, 110: 1111-1119. |
23 | Esfe M H, Esfandeh S, Afrand M, et al. Experimental evaluation, new correlation proposing and ANN modeling of thermal properties of EG based hybrid nanofluid containing ZnO-DWCNT nanoparticles for internal combustion engines applications[J]. Applied Thermal Engineering, 2018, 133: 452-463. |
24 | Dehkordi R A, Esfe M H, Afrand M. Effects of functionalized single walled carbon nanotubes on thermal performance of antifreeze: an experimental study on thermal conductivity[J]. Applied Thermal Engineering, 2017, 120: 358-366. |
25 | 崔文政, 沈照杰, 毛东旭, 等. 纳米流体中纳米颗粒微运动的分子动力学模拟[J]. 化工学报, 2017, 68: 48-53. |
Cui W Z, Shen Z J, Mao D X, et al. Micro-movements of nanoparticles in nanofluids: molecular dynamics simulation[J]. CIESC Journal, 2017, 68: 48-53. | |
26 | Qi C, Fan F, Pan Y H, et al. Effects of turbulator with round hole on the thermo-hydraulic performance of nanofluids in a triangle tube[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118897. |
27 | Sun B, Guo Y J, Yang D, et al. The effect of constant magnetic field on convective heat transfer of Fe3O4/water magnetic nanofluid in horizontal circular tubes[J]. Applied Thermal Engineering, 2020, 171: 114920. |
28 | Sun B, Liu H F. Flow and heat transfer characteristics of nanofluids in a liquid-cooled CPU heat radiator[J]. Applied Thermal Engineering, 2017, 115: 435-443. |
29 | 姚寿广, 程清芳, 王公利, 等. 以泡沫金属为吸液芯的纳米流体热管传热性能试验研究[J]. 江苏科技大学学报(自然科学版), 2013, 27(6): 556-560. |
Yao S G, Cheng Q F, Wang G L, et al. Experimental investigation on heat transfer performance of foam metal wick heat pipe[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2013, 27(6): 556-560. | |
30 | 郭亚丽, 徐鹤函, 沈胜强, 等. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流[J]. 物理学报, 2013, 62(14): 326-331. |
Guo Y L, Xu H H, Shen S Q, et al. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method[J]. Acta Physica Sinica, 2013, 62(14): 326-331. | |
31 | Zhou X M, Li X F, Cheng K Y, et al. Numerical study of heat transfer enhancement of nano liquid-metal fluid forced convection in circular tube[J]. Journal of Heat Transfer, 2018, 140(8): 081901. |
32 | 沙丽丽, 巨永林, 张华. 不同磁场作用下Fe3O4/water纳米流体层流流动对流传热系数的实验研究[J]. 化工学报, 2018, 69(4): 1349-1356. |
Sha L L, Ju Y L, Zhang H. Experimental investigation of convective heat transfer coefficient using Fe3O4/water nanofluids under different magnetic field in laminar flow[J]. CIESC Journal, 2018, 69(4): 1349-1356. | |
33 | Mei S Y, Qi C, Luo T, et al. Effects of magnetic field on thermo-hydraulic performance of Fe3O4-water nanofluids in a corrugated tube[J]. International Journal of Heat and Mass Transfer, 2019, 128: 24-45. |
34 | Dalkılıç A S, Türk O A, Mercan H, et al. An experimental investigation on heat transfer characteristics of graphite-SiO2/water hybrid nanofluid flow in horizontal tube with various quad-channel twisted tape inserts[J]. International Communications in Heat and Mass Transfer, 2019, 107: 1-13. |
35 | Selimefendigil F, Öztop H F. MHD Pulsating forced convection of nanofluid over parallel plates with blocks in a channel[J]. International Journal of Mechanical Sciences, 2019, 157/158: 726-740. |
36 | Selimefendigil F, Öztop H F. Magnetohydrodynamics forced convection of nanofluid in multi-layered U-shaped vented cavity with a porous region considering wall corrugation effects[J]. International Communications in Heat and Mass Transfer, 2020, 113: 104551. |
37 | Selimefendigil F, Öztop H F. Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 540: 123004. |
38 | Selimefendigil F, Oztop H, Sheremet M, et al. Forced convection of Fe3O4-water nanofluid in a bifurcating channel under the effect of variable magnetic field[J]. Energies, 2019, 12(4): 666. |
39 | Selimefendigil F, Öztop H F, Chamkha A J. Role of magnetic field on forced convection of nanofluid in a branching channel[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 30(4): 1755-1772. |
40 | 夏国栋, 杜墨, 刘冉. 微通道内纳米流体的流动与换热特性[J]. 北京工业大学学报, 2016, 42(3): 454-459, 466. |
Xia G D, Du M, Liu R. Hydraulic and thermal characteristics of nanofluid in microchannel[J]. Journal of Beijing University of Technology, 2016, 42(3): 454-459, 466. | |
41 | Sajid M U, Ali H M, Sufyan A, et al. Experimental investigation of TiO2-water nanofluid flow and heat transfer inside wavy mini-channel heat sinks[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(4): 1279-1294. |
42 | Sarafraz M M, Nikkhah V, Nakhjavani M, et al. Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment[J]. Experimental Thermal and Fluid Science, 2018, 91: 509-519. |
43 | Sarafraz M M, Yang B, Pourmehran O, et al. Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel[J]. International Communications in Heat and Mass Transfer, 2019, 107: 24-33. |
44 | Ho C J, Liao J C, Li C H, et al. Experimental study of cooling performance of water-based alumina nanofluid in a minichannel heat sink with MEPCM layer embedded in its ceiling[J]. International Communications in Heat and Mass Transfer, 2019, 103: 1-6. |
45 | 刘冉, 夏国栋, 杜墨. 三角形微通道内纳米流体流动与换热特性[J]. 化工学报, 2016, 67(12): 4936-4943. |
Liu R, Xia G D, Du M. Characteristics of convective heat transfer in triangular microchannel heat sink using different nanofluids[J]. CIESC Journal, 2016, 67(12): 4936-4943. | |
46 | 吴信宇, 吴慧英, 屈健, 等. 纳米流体在芯片微通道中的流动与换热特性[J]. 化工学报, 2008, 59(9): 2181-2187. |
Wu X Y, Wu H Y, Qu J, et al. Flow and heat transfer characteristics of nanofluids in silicon chip microchannels[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(9): 2181-2187. | |
47 | 齐聪. 基于LBM的纳米流体自然对流和沸腾换热特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
Qi C. Investigation into natural convection and boiling heat transfer of nanofluids based on LBM[D]. Harbin: Harbin Institute of Technology, 2013. | |
48 | Pak B C, Cho Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11(2): 151-170. |
49 | Brinkman H C. The viscosity of concentrated suspensions and solutions[J]. The Journal of Chemical Physics, 1952, 20(4): 571. |
50 | Kline S, McClintock F. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75: 3-8. |
51 | 刘纪福, 方彬, 赵玉珍. 顺排翅片管束传热和阻力特性的实验研究[J]. 哈尔滨工业大学学报, 1987, 19(3): 67-76. |
Liu J F, Fang B, Zhao Y Z. Experimental research on heat transfer and pressure drop of air flowing in a sequential finned pipe column[J]. Journal of Harbin Institute of Technology, 1987, 19(3): 67-76. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[13] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 438
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||