CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2817-2825.DOI: 10.11949/0438-1157.20201305
• Energy and environmental engineering • Previous Articles Next Articles
JIANG Wenwen(),NIE Pengfei,HU Bin,LI Jingjing,LIU Jianyun()
Received:
2020-09-11
Revised:
2020-12-17
Online:
2021-05-05
Published:
2021-05-05
Contact:
LIU Jianyun
通讯作者:
刘建允
作者简介:
蒋雯雯(1996—),女,硕士研究生,基金资助:
CLC Number:
JIANG Wenwen, NIE Pengfei, HU Bin, LI Jingjing, LIU Jianyun. Selective capacitive adsorption of fluoride ions with Al2O3/AC anode[J]. CIESC Journal, 2021, 72(5): 2817-2825.
蒋雯雯, 聂鹏飞, 胡彬, 李菁菁, 刘建允. Al2O3/AC正极选择性电容吸附水中氟离子[J]. 化工学报, 2021, 72(5): 2817-2825.
Add to citation manager EndNote|Ris|BibTeX
样品 | 比表面积/ (m2·g-1) | 总孔孔容/ (cm3·g-1) | 微孔孔容/ (cm3·g-1) | 平均孔径/nm |
---|---|---|---|---|
AC | 1189 | 0.558 | 0.443 | 1.87 |
5% Al2O3/AC | 1938 | 0.864 | 0.564 | 0.82 |
Table 1 The porosity parameters of various samples
样品 | 比表面积/ (m2·g-1) | 总孔孔容/ (cm3·g-1) | 微孔孔容/ (cm3·g-1) | 平均孔径/nm |
---|---|---|---|---|
AC | 1189 | 0.558 | 0.443 | 1.87 |
5% Al2O3/AC | 1938 | 0.864 | 0.564 | 0.82 |
Fig.3 The CV curves of AC, 3% Al2O3/AC, 5% Al2O3/AC and 7% Al2O3/AC electrodes (a); The specific capacitance of electrodes at various scan rates (b); The GCD curves of different electrodes (c); EIS curves of the different electrodes (d)(Electrolyte: 7 mmol·L-1 NaF solution)
Fig.4 The curves of NaF concentration vs. time and the corresponding voltage vs. time of 3% Al2O3/AC‖AC, 5% Al2O3/AC‖AC, 7% Al2O3/AC‖AC, AC‖AC capacitors (a); Defluorination of different electrodes (b)
Fig.6 The selectivity α values corresponding to different F-/Cl- concentration ratio (a); The selectivity α values corresponding to different F-/SO42- concentration ratio (b)
1 | Khatibikamal V, Torabian A, Janpoor F, et al. Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics [J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 276-280. |
2 | Habuda-Stanic M, Ravancic M E, Flanagan A. A review on adsorption of fluoride from aqueous solution [J]. Materials, 2014, 7(9): 6317-6366. |
3 | Bhatnagar A, Kumar E, Sillanpaa M. Fluoride removal from water by adsorption—a review [J]. Chemical Engineering Journal, 2011, 171(3): 811-840. |
4 | Dessalegne M, Zewge F, Pfenninger N, et al. Layered double hydroxide and its calcined product for fluoride removal from groundwater of Ethiopian rift valley [J]. Water, Air, and Soil Pollution, 2016, 227(10): 1-13. |
5 | Paudyal H, Pangeni B, Inoue K, et al. Preparation of novel alginate based anion exchanger from Ulva japonica and its application for the removal of trace concentrations of fluoride from water [J]. Bioresource Technology, 2013, 148(148): 221-227. |
6 | 李莉, 王业耀, 孟凡生. 含氟地下水饮用处理技术 [J]. 地下水, 2007, 29(5): 85-86. |
Li L, Wang Y Y, Meng F S. Removal of fluoride in ground water for drinking [J]. Ground Water, 2007, 29(5): 85-86. | |
7 | Bonyadi Z, Kumar P S, Foroutan R, et al. Ultrasonic-assisted synthesis of Populus alba activated carbon for water defluorination: application for real wastewater [J]. The Korean Journal of Chemical Engineering, 2019, 36(10): 1595-1603. |
8 | Alencherry T, Naveen A R, Ghosh S, et al. Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization [J]. Desalination, 2017, 415:14-19. |
9 | Xie Z Z, Shang X H, Xu K B, et al. Facile synthesis of in situ graphitic-N doped porous carbon derived from ginkgo leaf for fast capacitive deionization [J]. Journal of the Electrochemical Society, 2019, 166(8): E240-E247. |
10 | 赵飞, 苑志华, 钟鹭斌, 等. 电容去离子技术及其电极材料研究进展 [J]. 水处理技术, 2016, 42(5): 38-44. |
Zhao F, Yuan Z H, Zhong L B, et al. Review on electrode materials and capacitive deionization (CDI) technology for desalination [J]. Technology of Water Treatment, 2016, 42(5): 38-44. | |
11 | Bai Z Y, Hu C Z, Liu H J, et al. Selective adsorption of fluoride from drinking water using NiAl-layered metal oxide film electrode [J]. Journal of Colloid and Interface Science, 2019, 539:146-151. |
12 | Oren Y. Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review) [J]. Desalination, 2008, 228(1/2/3): 10-29. |
13 | Zhang R, Gu X, Liu Y, et al. Hydrophilic nano-porous carbon derived from egg whites for highly efficient capacitive deionization [J]. Applied Surface Science, 2020, 512:145740. |
14 | 吴阳春, 应迪文, 王亚林, 等. 电容脱盐技术及其在废水处理中的应用 [J]. 水处理技术, 2019, 45(8): 1-6. |
Wu Y C, Ying D W, Wang Y L, et al. Capacitive desalination technology and its application in wastewater treatment [J]. Technology of Water Treatment, 2019, 45(8): 1-6. | |
15 | 刘宋文. 活性炭负载活性氧化铝复合除氟材料的制备及其除氟性能的研究 [D]. 武汉: 武汉理工大学, 2014. |
Liu S W. Preparation of activated carbon supported activated alumina composite adsorbent and its defluoridation properties [D]. Wuhan: WuhanUniversity of Technology, 2014. | |
16 | Li D, Wang S, Wang G, et al. Facile fabrication of NiCoAl-layered metal oxide/graphene nanosheets for efficient capacitive deionization defluorination [J]. ACS Applied Materials and Interfaces, 2019, 11(34): 31200-31209. |
17 | Camacho L M, Torres A, Saha D, et al. Adsorption equilibrium and kinetics of fluoride on sol-gel-derived activated alumina adsorbents [J]. Journal of Colloid and Interface Science, 2010, 349(1): 307-313. |
18 | 马福臻, 周少奇, 刘泽珺, 等. 三维网状HZO@SGH对水中氟离子的吸附作用和机制 [J]. 环境科学, 2018, (2): 828-837. |
Ma F Z, Zhou S Q, Liu Z J, et al. Adsorption performance and mechanism of HZO@SGH for the removal of fluoride from aqueous solution [J]. Environmental Science, 2018, (2): 828-837. | |
19 | 马家骧, 吴作舟, 关惠兰. 饮用水脱氟方法的研究——高吸附容量活性氧化铝法 [J]. 中国公共卫生, 1986, (2): 46-48. |
Ma J X, Wu Z Z, Guan H L. Study on defluorination of drinking water -- high adsorption capacity activated alumina process [J]. Chinese Journal of Public Health, 1986, (2): 46-48. | |
20 | Lin J Y, Chen Y L, Hong X Y, et al. The role of fluoroaluminate complexes on the adsorption of fluoride onto hydrous alumina in aqueous solutions [J]. Journal of Colloid and Interface Science, 2020, 561: 275-286. |
21 | Xie Z Z, Shang X H, Yang J M, et al. 3D interconnected boron- and nitrogen-codoped carbon nanosheets decorated with manganese oxides for high-performance capacitive deionization [J]. Carbon, 2020, 158: 184-192. |
22 | 马越. 改性活性炭/纳米羟基氧化铝对水中氟离子的去除研究 [D]. 济南: 山东大学, 2009. |
Ma Y. Study of fluoride ion removal using modified activated carbon / nano-scale alumina oxide hydroxide [D]. Jinan: Shandong University, 2009. | |
23 | 潘杰峰, 郑瑜, 丁金成, 等. 膜法电容去离子技术用于水溶液中单/多价阴离子的分离 [J]. 化工学报, 2018, 69(8): 3502-3508. |
Pan J F, Zheng Y, Ding J C, et al. Monovalent anions removal by capacitive deionization integrated with monovalent anion permselective exchange membrane [J]. CIESC Journal, 2018, 69(8): 3502-3508. | |
24 | 陈学刚, 宋怀河, 陈晓红, 等. 萘和二茂铁共炭化制备纳米Fe/C材料的研究 [J]. 新型炭材料, 2000, 15(4): 5-8. |
Chen X G, Song H H, Chen X H, et al. Preparation of nano-iron/carbon material from naphthalene and ferrocene [J]. New Carbon Materials, 2000, 15(4): 5-8. | |
25 | Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids [J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758. |
26 | Tang J, Salunkhe R R, Liu J, et al. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon [J]. Journal of the American Chemical Society, 2015, 137(4): 1572-1580. |
27 | Elisadiki J, Jande Y A C, Kibona T E, et al. Highly porous biomass-based capacitive deionization electrodes for water defluoridation [J]. Ionics, 2020, 26(5): 2477-2492. |
28 | Cui B B, Hu B, Liu J M, et al. Solution-plasma-assisted bimetallic oxide alloy nanoparticles of Pt and Pd embedded within two-dimensional Ti3C2Tx nanosheets as highly active electrocatalysts for overall water splitting [J]. ACS Applied Materials and Interfaces, 2018, 10(28): 23858-23873. |
29 | 高利军, 白思林, 梁苏岑, 等. ZIF衍生多孔碳纳米纤维用于高效电容去离子的研究 [J]. 化工学报, 2020, 71(6): 2760-2767. |
Gao L J, Bai S L, Liang S C, et al. ZIF-derived porous carbon nanofibers for high-efficiency capacitive deionization[J]. CIESC Journal, 2020, 71(6): 2760-2767. | |
30 | Xu B, Xu X, Gao H, et al. Electro-enhanced adsorption of ammonium ions by effective graphene-based electrode in capacitive deionization [J]. Separation and Purification Technology, 2020, 250:117243. |
31 | Liu J Y, Xiong Z B, Wang S P, et al. Structure and electrochemistry comparison of electrospun porous carbon nanofibers for capacitive deionization [J]. Electrochimica Acta, 2016, 210: 171-180. |
32 | 徐向宇, 廖艳清, 孙建川, 等. 活性氧化铝及其再生氧化铝对水中氟离子的吸附 [J]. 物理化学学报, 2019, 35(3): 317-326. |
Xu X Y, Liao Y Q, Sun J C, et al. Removal of fluorides from aqueous solutions using fresh and regenerated activated alumina [J]. Acta Physico-Chimica Sinica, 2019, 35(3): 317-326. | |
33 | Nie P F, Cai W S, Xie Z Z, et al. Inversion phenomenon and effective charging quantity in capacitive deionization device [J]. Ionics, 2020, 26(7): 3523-3529. |
34 | 王刚, 张云启, 汪仕勇, 等. 共价交联法制备具有优异电容去离子脱盐性能的硼碳氮纳米片/石墨烯复合电极 [J]. 新型炭材料, 2020, 35(4): 384-393. |
Wang G, Zhang Y Q, Wang S Y, et al. Boron-nitride-carbon nanosheet/graphene composites generated by covalent cross-linking which have an excellent capacitive deionization performance [J]. New Carbon Materials, 2020, 35(4): 384-393. | |
35 | 张璋. 活性炭基电容除盐装置去除水中氟离子的性能与机理研究 [D]. 北京: 北京交通大学, 2019. |
Zhang Z. Study on performance and mechanism of fluoride removal from water by activated carbon based capacitive desalination [D]. Beijing: Beijing Jiaotong University, 2019. | |
36 | 乌丽罕. 衡水地区高氟地下水化学特征及其成因 [D]. 北京: 中国地质大学, 2015. |
Wu L H. Characteristics and genesis of high-fluoride groundwater in Hengshui City, the North China plain [D]. Beijing: ChinaUniversity of Geosciences, 2015. | |
37 | 李聪. 稻壳基活性炭脱氟剂的动态吸附性能研究 [D]. 武汉: 华中科技大学, 2015. |
Li C. Research on the adsorption property of the rice husk activated carbon as defluorination agent [D]. Wuhan: Huazhong University of Science and Technology, 2015. |
[1] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[2] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[3] | Luyue HUANG, Chang LIU, Yongyi XU, Haoruo XING, Feng WANG, Shuangchen MA. Development of CDI two-dimensional concentration mass transfer model and experimental validation [J]. CIESC Journal, 2022, 73(7): 2933-2943. |
[4] | Gang WANG, Xiaoping CHE, Shiyong WANG, Jieshan QIU. Carbon electrodes modified with water-soluble charged polymer binder for enhanced capacitive deionization performance [J]. CIESC Journal, 2022, 73(4): 1763-1771. |
[5] | Qi WANG, Kuo FANG, Conghui HE, Kaijun WANG. Recent development and future challenges of flow-electrode capacitive deionization [J]. CIESC Journal, 2022, 73(3): 975-989. |
[6] | Li LIU, Peng JIANG, Wei WANG, Tonghuan ZHANG, Liwen MU, Xiaohua LU, Jiahua ZHU. Coupling process simulation and random forest model for analyzing and predicting biomass-to-hydrogen conversion [J]. CIESC Journal, 2022, 73(11): 5230-5239. |
[7] | Chao ZHANG, Jian CHEN, Wenhua YIN, Yuanhui SHEN, Zhaoyang NIU, Xiuxin YU, Donghui ZHANG, Zhongli TANG. Transient analysis of pressure swing adsorption hydrogen purification process [J]. CIESC Journal, 2022, 73(1): 308-321. |
[8] | LUO Weili, WANG Wenwen, PAN Quanwen, GE Tianshu, WANG Ruzhu. Heat storage performance of composite adsorbent with activated carbon fiber [J]. CIESC Journal, 2021, 72(S1): 554-559. |
[9] | Kang YAN, Song YANG, Shoujun LIU, Chao YANG, Huiling FAN, Ju SHANGGUAN. In-situ preparation of ZnO-based activated carbon desulfurizer from low-rank coal [J]. CIESC Journal, 2021, 72(9): 4921-4930. |
[10] | WANG Jing, HAN Qiaoning, LEI Yiting, TANG Man, CHEN Lihong, CHE Junda, LIU Zuguang. One-step preparation of oxygen-enriched lignin activated carbon and its methylene blue adsorption performance [J]. CIESC Journal, 2021, 72(5): 2826-2836. |
[11] | LI Xiaoyu, XU Hongyang, DAI Min, CAI Shanshan. Impact of thermal dispersion on full-scale heat transfer of borehole heat exchangers [J]. CIESC Journal, 2021, 72(5): 2547-2559. |
[12] | JIAO Shuai, YANG Lei, WU Tingting, LI Hongqiang, LYU Huihong, HE Xiaojun. Synthesis of nitrogen doped hierarchically porous carbon nanosheets for supercapacitor by mixed salt template [J]. CIESC Journal, 2021, 72(5): 2869-2877. |
[13] | Xueyan YE, Zheng LI, Ran LUO, Yalin SONG, Ruijuan CUI. Mechanism of influence of flow velocity on colloid blockage in porous media during artificial groundwater recharge [J]. CIESC Journal, 2021, 72(11): 5520-5532. |
[14] | Fan LI, Aolin JIANG, Haolin YANG, Xiaojun ZENG, Liqiao JIANG, Xiaohan WANG. Study on enhancing flame stability using zirconia-based coating walls [J]. CIESC Journal, 2021, 72(11): 5883-5892. |
[15] | Zhengyi ZHANG,Qian ZHANG,Ziyang LOU,Wei LIU,Yunan ZHU,Chunbo YUAN,Xiao YU,Tiantao ZHAO. Oxidation characteristics and spectral analysis of leachate reverse osmosis concentrate by catalytic ozonation [J]. CIESC Journal, 2021, 72(10): 5362-5371. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||