CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3823-3831.DOI: 10.11949/0438-1157.20210014

• Material science and engineering, nanotechnology • Previous Articles     Next Articles

Microreaction continuous synthesis of gold nanoparticles

DONG Xiaorui(),WANG Kai(),LUO Guangsheng   

  1. Department of Chemical Engineering, State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2021-01-05 Revised:2021-05-07 Online:2021-07-05 Published:2021-07-05
  • Contact: WANG Kai

金纳米颗粒的微反应连续合成

董晓锐(),王凯(),骆广生   

  1. 清华大学化学工程系,化学工程联合国家重点实验室,北京 100084
  • 通讯作者: 王凯
  • 作者简介:董晓锐(1995—),男,博士研究生,xiaorui@mit.edu
  • 基金资助:
    国家自然科学基金项目(92034303)

Abstract:

Gold nanoparticles have characteristic ultraviolet-visible absorption spectra, and they are widely used in the field of analysis and detection. In order to break through the technical limitations of batch stirring reaction to prepare gold nanoparticles, a continuous-flow microreaction method was proposed. This method implemented rapid and uniform mixing of HAuCl4 and Na3Ct aqueous solutions under acidic conditions with the help of threaded pipes, introduced an inert solvent to avoid particle deposition in the reactor, and used a membrane phase separator to complete the oil-water online phase separation, achieving continuous and stable preparation of gold nanoparticles. The influences of the reactant molar ratio, concentration, residence time, water-oil volume ratio, pH and other factors on the particle size distribution and absorption spectrum were investigated, and the narrow size distributed gold nanoparticles with average sizes of 20—24 nm and dispersion factors of <10% were successfully prepared.

Key words: microreactor, mixing, nanoparticle, continuous synthesis, flow chemistry

摘要:

金纳米颗粒具有特征性紫外-可见吸收光谱,在分析检测领域被广泛应用。为了突破间歇搅拌反应制备金纳米颗粒的技术局限,提出了一种连续流微反应方法。该方法在酸性条件下借助螺纹管实施HAuCl4和Na3Ct水溶液的快速均匀混合,引入惰性溶剂避免颗粒在反应器内沉积,利用膜分相装置完成油水在线相分离,实现了金纳米颗粒的连续稳定制备。探索了反应物摩尔比、浓度、停留时间、水油体积比、pH等因素对于颗粒粒径分布和吸收光谱的影响规律,成功制备了平均粒径20~24 nm、分散因子小于10%的窄分布金纳米颗粒。

关键词: 微反应器, 混合, 纳米粒子, 连续合成, 流动化学

CLC Number: