CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 453-460.DOI: 10.11949/0438-1157.20201517
• Energy and environmental engineering • Previous Articles Next Articles
Received:
2020-10-29
Revised:
2021-01-15
Online:
2021-06-20
Published:
2021-06-20
Contact:
LIN Wensheng
通讯作者:
林文胜
作者简介:
何婷(1995—),女,博士研究生,CLC Number:
HE Ting, LIN Wensheng. Natural gas liquefaction system with activated MDEA method for CO2 removal based on waste heat utilization[J]. CIESC Journal, 2021, 72(S1): 453-460.
何婷, 林文胜. 基于余热利用的活化MDEA法脱除CO2的天然气液化系统[J]. 化工学报, 2021, 72(S1): 453-460.
Parameters | Lower bound | Upper bound |
---|---|---|
N301-C1/(kmol/h) | 3000 | 4000 |
N301-C2/(kmol/h) | 3000 | 4000 |
N301-C3/(kmol/h) | 800 | 1200 |
N301-C4/(kmol/h) | 200 | 600 |
N301-N2/(kmol/h) | 300 | 800 |
p302/kPa | 2000 | 3500 |
T310/℃ | -150 | -130 |
T306/℃ | -100 | -80 |
T304/℃ | -45 | -20 |
N401/(kmol/h) | 3000 | 7000 |
p402/kPa | 1000 | 1800 |
Table 1 Upper and lower bounds of parameters to be optimized
Parameters | Lower bound | Upper bound |
---|---|---|
N301-C1/(kmol/h) | 3000 | 4000 |
N301-C2/(kmol/h) | 3000 | 4000 |
N301-C3/(kmol/h) | 800 | 1200 |
N301-C4/(kmol/h) | 200 | 600 |
N301-N2/(kmol/h) | 300 | 800 |
p302/kPa | 2000 | 3500 |
T310/℃ | -150 | -130 |
T306/℃ | -100 | -80 |
T304/℃ | -45 | -20 |
N401/(kmol/h) | 3000 | 7000 |
p402/kPa | 1000 | 1800 |
Flow | T/℃ | p/kPa | Molar flow/(kmol/h) | CO2 content/% | CH4 content/% |
---|---|---|---|---|---|
101 | 40 | 101 | 7200 | 10 | 90 |
103 | 40 | 1500 | 7200 | 10 | 90 |
104 | 40.03 | 1440 | 6473 | 0 | 99.56 |
201 | 40 | 150 | 16869 | 0.01 | 0 |
203 | 40 | 1440 | 16869 | 0.01 | 0 |
204 | 67.95 | 1500 | 17564 | 4.03 | 0.03 |
205 | 67.91 | 200 | 17564 | 4.03 | 0.03 |
208 | 85 | 200 | 17549 | 4.02 | 0 |
210 | 113.2 | 150 | 16790 | 0.01 | 0 |
211 | 89 | 150 | 16790 | 0.01 | 0 |
501 | 600 | 120 | 9410 | — | — |
502 | 176 | 120 | 9410 | — | — |
601 | 100 | 200 | 6000 | — | — |
602 | 120.2 | 200 | 6000 | — | — |
Table 2 Node parameters of purification section
Flow | T/℃ | p/kPa | Molar flow/(kmol/h) | CO2 content/% | CH4 content/% |
---|---|---|---|---|---|
101 | 40 | 101 | 7200 | 10 | 90 |
103 | 40 | 1500 | 7200 | 10 | 90 |
104 | 40.03 | 1440 | 6473 | 0 | 99.56 |
201 | 40 | 150 | 16869 | 0.01 | 0 |
203 | 40 | 1440 | 16869 | 0.01 | 0 |
204 | 67.95 | 1500 | 17564 | 4.03 | 0.03 |
205 | 67.91 | 200 | 17564 | 4.03 | 0.03 |
208 | 85 | 200 | 17549 | 4.02 | 0 |
210 | 113.2 | 150 | 16790 | 0.01 | 0 |
211 | 89 | 150 | 16790 | 0.01 | 0 |
501 | 600 | 120 | 9410 | — | — |
502 | 176 | 120 | 9410 | — | — |
601 | 100 | 200 | 6000 | — | — |
602 | 120.2 | 200 | 6000 | — | — |
Flow | T/℃ | p/kPa | Molar flow/(kmol/h) |
---|---|---|---|
105 | 40 | 1400 | 6473 |
107 | 40 | 5000 | 6473 |
108 | -35 | 5000 | 6473 |
109 | -112 | 5000 | 6473 |
110 | -162.5 | 5000 | 6473 |
111 | -160.7 | 110 | 6473 |
301 | 37 | 120 | 8682 |
303 | 40 | 3000 | 8682 |
304 | -34 | 3000 | 8682 |
306 | -94 | 3000 | 5416 |
307 | -114.3 | 120 | 5416 |
310 | -145 | 3000 | 3266 |
311 | -165.6 | 120 | 3266 |
401 | 35.19 | 120 | 5289 |
403 | 40 | 1380 | 5289 |
404 | -38.25 | 120 | 5289 |
Table 3 Node parameters of liquefaction section
Flow | T/℃ | p/kPa | Molar flow/(kmol/h) |
---|---|---|---|
105 | 40 | 1400 | 6473 |
107 | 40 | 5000 | 6473 |
108 | -35 | 5000 | 6473 |
109 | -112 | 5000 | 6473 |
110 | -162.5 | 5000 | 6473 |
111 | -160.7 | 110 | 6473 |
301 | 37 | 120 | 8682 |
303 | 40 | 3000 | 8682 |
304 | -34 | 3000 | 8682 |
306 | -94 | 3000 | 5416 |
307 | -114.3 | 120 | 5416 |
310 | -145 | 3000 | 3266 |
311 | -165.6 | 120 | 3266 |
401 | 35.19 | 120 | 5289 |
403 | 40 | 1380 | 5289 |
404 | -38.25 | 120 | 5289 |
CO2 content/% | Regeneration heat load /(kJ/m3) | Net regeneration heat load/(kJ/m3) | Purification power consumption/(kW·h/m3) | w/(kW·h/kg) | α/% |
---|---|---|---|---|---|
1 | 140.19 | 0 | 0.096 | 0.577 | 25.1 |
10 | 828.99 | 0 | 0.087 | 0.584 | 84.9 |
30 | 2116.19 | 1092.5 | 0.099 | 0.611 | 92.0 |
Table 4 Energy consumption of system
CO2 content/% | Regeneration heat load /(kJ/m3) | Net regeneration heat load/(kJ/m3) | Purification power consumption/(kW·h/m3) | w/(kW·h/kg) | α/% |
---|---|---|---|---|---|
1 | 140.19 | 0 | 0.096 | 0.577 | 25.1 |
10 | 828.99 | 0 | 0.087 | 0.584 | 84.9 |
30 | 2116.19 | 1092.5 | 0.099 | 0.611 | 92.0 |
Upgrading technologies | CH4 purity (vol)/% | Energy consumption (kW·h/m3 of raw biogas) | H2S/water pre-upgrading | Additional heat |
---|---|---|---|---|
water scrubbing + regeneration | 97 (93—99) | 0.3 (0.2—0.46) | necessary | not necessary |
physical absorption | 97 (95—99) | 0.25 (0.2—0.3) | necessary | necessary |
chemical absorption | 98 (97—99) | 0.4 (0.3—0.8) | not necessary | necessary |
pressure swing absorption | 97 (95—99) | 0.25 (0.2—0.3) | necessary | not necessary |
membrane technology | 95 (80—99) | 0.3 (0.15—0.43) | not necessary | not necessary |
Table 5 Characteristics of different biogas upgrading technologies[29]
Upgrading technologies | CH4 purity (vol)/% | Energy consumption (kW·h/m3 of raw biogas) | H2S/water pre-upgrading | Additional heat |
---|---|---|---|---|
water scrubbing + regeneration | 97 (93—99) | 0.3 (0.2—0.46) | necessary | not necessary |
physical absorption | 97 (95—99) | 0.25 (0.2—0.3) | necessary | necessary |
chemical absorption | 98 (97—99) | 0.4 (0.3—0.8) | not necessary | necessary |
pressure swing absorption | 97 (95—99) | 0.25 (0.2—0.3) | necessary | not necessary |
membrane technology | 95 (80—99) | 0.3 (0.15—0.43) | not necessary | not necessary |
CO2 content/% | Circulation amine /(kmol/h) | η/% | Replenish solvent water /(kmol/h) |
---|---|---|---|
1 | 4035 | 0.03 | 46 |
10 | 16870 | 0.11 | 56 |
30 | 45682 | 0.28 | 70 |
Table 6 Material consumption of the system
CO2 content/% | Circulation amine /(kmol/h) | η/% | Replenish solvent water /(kmol/h) |
---|---|---|---|
1 | 4035 | 0.03 | 46 |
10 | 16870 | 0.11 | 56 |
30 | 45682 | 0.28 | 70 |
1 | 程序, 崔宗均, 朱万斌. 论另类非常规天然气: 生物天然气的开发[J]. 天然气工业, 2013, 33(1): 137-144. |
Cheng X, Cui Z J, Zhu W B. A discussion on the exploitation of biogas: another kind of unconventional natural gas resources [J]. Natural Gas Industry, 2013, 33(1): 137-144. | |
2 | Kárászová M, Sedláková Z, Izák P. Gas permeation processes in biogas upgrading: a short review [J]. Chemical Papers, 2015, 69(10): 1277-1283. |
3 | 赵洪坤. CO2驱采油技术研究与应用现状[J]. 中国石油和化工标准与质量, 2016, 36(16): 99, 102. |
Zhao H K. Research and application status of CO2 flooding oil recovery technology [J]. China Petroleum and Chemical Standard and Quality, 2016, 36(16): 99, 102. | |
4 | 陈小华. 浅述二氧化碳驱油技术应用现状[J]. 中国石油和化工标准与质量, 2019, 39(12): 43-44, 46. |
Chen X H. Brief introduction to the application status of carbon dioxide flooding technology [J]. China Petroleum and Chemical Standard and Quality, 2019, 39(12): 43-44, 46. | |
5 | 马鹏飞, 韩波, 张亮, 等. 油田CO2驱产出气处置方案及CO2捕集回注工艺[J]. 化工进展, 2017, 36(S1): 533-539. |
Ma P F, Han B, Zhang L, et al. Disposal scheme of produced gas and CO2 capture for re-injection in CO2 EOR [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 533-539. | |
6 | 周淑霞. 沼气液化制取生物质LNG关键技术研究[D]. 济南: 山东大学, 2012. |
Zhou S X. Research on key technologies on liquefied production of biomass LNG from biogas [D]. Jinan: Shandong University, 2012. | |
7 | 袁青, 刘音, 毕研霞, 等. 油气田开发中CO2腐蚀机理及防腐方法研究进展[J]. 天然气与石油, 2015, 33(2): 78-81, 13. |
Yuan Q, Liu Y, Bi Y X, et al. Research on CO2 corrosion and corrosion control method in oil and gas field development [J]. Natural Gas and Oil, 2015, 33(2): 78-81, 13. | |
8 | 王玉柱, 蒋洪, 赵建彬, 等. 天然气回收乙烷中二氧化碳固体形成的防控措施[J]. 天然气化工(C1化学与化工), 2020, 45(2): 106-112. |
Wang Y Z, Jiang H, Zhao J B, et al. Prevention and control measures of carbon dioxide solid formation in ethane recovery from natural gas [J]. Natural Gas Chemical Industry, 2020, 45(2): 106-112. | |
9 | 常学煜, 李玉星, 张盈盈, 等. 天然气脱酸工艺参数优化及节能研究[J]. 天然气化工(C1化学与化工), 2017, 42(3): 67-72, 92. |
Chang X Y, Li Y X, Zhang Y Y, et al. Optimization of process parameters and energy-saving research for natural gas deacidification process [J]. Natural Gas Chemical Industry, 2017, 42(3): 67-72, 92. | |
10 | 李超伟, 仵浩, 范良忠. 两种物理吸收法在沼气脱碳中的模拟对比研究[J]. 可再生能源, 2012, 30(9): 75-79. |
Li C W, Wu H, Fan L Z. Comparative study of two physical absorption method in the simulation of biogas decarbonization [J]. Renewable Energy Resources, 2012, 30(9): 75-79. | |
11 | Liu Z, Green W H. Experimental investigation of sorbent for warm CO2 capture by pressure swing adsorption [J]. Industrial & Engineering Chemistry Research, 2013, 52(28): 9665-9673. |
12 | Awad A, Aljundi I H. Layer-by-layer assembly of carbide derived carbon-polyamide membrane for CO2 separation from natural gas [J]. Energy, 2018, 157: 188-199. |
13 | Berstad D, Nekså P, Anantharaman R. Low-temperature CO2 removal from natural gas [J]. Energy Procedia, 2012, 26: 41-48. |
14 | 万宇飞, 邓骁伟, 程涛, 等. 不同含碳量天然气脱碳方案选择[J]. 油气田环境保护, 2013, 23(3): 56-58, 75. |
Wan Y F, Deng X W, Cheng T, et al. Decarbonization scheme selection for natural gas with different carbon content [J]. Environmental Protection of Oil & Gas Fields, 2013, 23(3): 56-58, 75. | |
15 | Yang H Q, Xu Z H, Fan M H, et al. Progress in carbon dioxide separation and capture: a review [J]. Journal of Environmental Sciences, 2008, 20(1): 14-27. |
16 | Banat F, Younas O, Didarul I. Energy and exergical dissection of a natural gas sweetening plant using methyldiethanol amine (MDEA) solution [J]. Journal of Natural Gas Science and Engineering, 2014, 16: 1-7. |
17 | Moioli S, Giuffrida A, Romano M C, et al. Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants [J]. Applied Energy, 2016, 183: 1452-1470. |
18 | 陈杰, 郭清, 花亦怀, 等. MDEA+MEA/DEA混合胺液脱碳性能试验研究[J]. 天然气工业, 2014, 34(5): 137-143. |
Chen J, Guo Q, Hua Y H, et al. An experimental study of absorption and desorption of blended amine solutions MDEA+MEA/DEA for natural gas decarburization [J]. Natural Gas Industry, 2014, 34(5): 137-143. | |
19 | 陈颖, 赵越超, 梁宏宝, 等. 以MDEA为主体的混合胺溶液吸收CO2研究进展[J]. 应用化工, 2014, 43(3): 531-534, 538. |
Chen Y, Zhao Y C, Liang H B, et al. Progress in CO2 absorption using active MDEA based aqueous solutions [J]. Applied Chemical Industry, 2014, 43(3): 531-534, 538. | |
20 | Privalova E, Rasi S, Mäki-Arvela P, et al. CO2 capture from biogas: absorbent selection [J]. RSC Advances, 2013, 3(9): 2979-2994. |
21 | 张磊, 蒋洪. 高含CO2天然气脱碳工艺中MDEA活化剂优选[J]. 石油与天然气化工, 2017, 46(4): 22-29. |
Zhang L, Jiang H. MDEA activator optimization for decarbonization process of high CO2-containing natural gas [J]. Chemical Engineering of Oil & Gas, 2017, 46(4): 22-29. | |
22 | Hajji A, Chahartaghi M, Kahani M. Thermodynamic analysis of natural gas liquefaction process with propane pre-cooled mixed refrigerant process (C3MR) [J]. Cryogenics, 2019, 103: 102978. |
23 | IGU. IGU 2019 World LNG Report [R]. Barcelona: IGU, [2019-06-07]. https://igu.org/resources/igu-world-lng-report-2019/. |
24 | 李泽伟, 周明亮, 杨磊, 等. 余热利用技术在陆梁油田的应用[J]. 油气田环境保护, 2015, 25(5): 49-51, 92. |
Li Z W, Zhou M L, Yang L, et al. Application of waste heat utilization technology in Luliang oilfield [J]. Environmental Protection of Oil & Gas Fields, 2015, 25(5): 49-51, 92. | |
25 | Franco A, Vaccaro M. A combined energetic and economic approach for the sustainable design of geothermal plants [J]. Energy Conversion and Management, 2014, 87: 735-745. |
26 | Varga Z, Csaba T. Techno-economic evaluation of waste heat recovery by organic Rankine cycle using pure light hydrocarbons and their mixtures as working fluid in a crude oil refinery [J]. Energy Conversion and Management, 2018, 174: 793-801. |
27 | Chan C W, Ling-Chin J, Roskilly A P. A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation [J]. Applied Thermal Engineering, 2013, 50(1): 1257-1273. |
28 | Singh B K, Shrivastava N. Exhaust gas heat recovery for C. I. engine — a review [J]. IJESRT Journal, 2014, 4(5): 14-19. |
29 | Baccioli A, Antonelli M, Frigo S, et al. Small scale bio-LNG plant: comparison of different biogas upgrading techniques [J]. Applied Energy, 2018, 217: 328-335. |
30 | Lawal A O, Idem R O. Kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous MEA-MDEA blends during CO2 absorption from flue gas streams [J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2601-2607. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[6] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[7] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[8] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[9] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[10] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[11] | Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754. |
[12] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[13] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[14] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
[15] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 273
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 457
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||