CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5177-5185.DOI: 10.11949/0438-1157.20220948
• Process safety • Previous Articles Next Articles
Jinfeng LI1(), Kai FANG1, Haohao XU1, Xinkun LI2, Junlong XIE2, Jianye CHEN2()
Received:
2022-07-05
Revised:
2022-08-11
Online:
2022-12-06
Published:
2022-11-05
Contact:
Jianye CHEN
厉劲风1(), 方凯1, 许好好1, 李鑫坤2, 谢军龙2, 陈建业2()
通讯作者:
陈建业
作者简介:
厉劲风(1991—),博士,工程师,jingfeng_lee@126.com
基金资助:
CLC Number:
Jinfeng LI, Kai FANG, Haohao XU, Xinkun LI, Junlong XIE, Jianye CHEN. Diffusion features of jet leakage with liquid hydrogen in large space[J]. CIESC Journal, 2022, 73(11): 5177-5185.
厉劲风, 方凯, 许好好, 李鑫坤, 谢军龙, 陈建业. 大空间液氢射流泄漏扩散特性[J]. 化工学报, 2022, 73(11): 5177-5185.
Add to citation manager EndNote|Ris|BibTeX
风速/(m/s) | 风向 | 环境温度/K | 大气压力/kPa | 泄漏孔高度/m | 泄漏孔直径/m | 液氢质量分数% | 泄漏速率/(m/s) |
---|---|---|---|---|---|---|---|
2.9 | +Y | 284.65 | 101.325 | 0.86 | 0.0263 | 35 | 106 |
Table 1 Experimental conditions for test 7 by HSL[8-9]
风速/(m/s) | 风向 | 环境温度/K | 大气压力/kPa | 泄漏孔高度/m | 泄漏孔直径/m | 液氢质量分数% | 泄漏速率/(m/s) |
---|---|---|---|---|---|---|---|
2.9 | +Y | 284.65 | 101.325 | 0.86 | 0.0263 | 35 | 106 |
1 | 刘玮, 万燕鸣, 熊亚林, 等. “双碳”目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术, 2022, 11(2): 635-642. |
Liu W, Wan Y M, Xiong Y L, et al. Outlook of low carbon and clean hydrogen in China under the goal of “carbon peak and neutrality”[J]. Energy Storage Science and Technology, 2022, 11(2): 635-642. | |
2 | 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
Li L L, Fan S S, Chen Q X, et al. Hydrogen storage technology: current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. | |
3 | Buttner W, Hall J, Coldrick S, et al. Hydrogen wide area monitoring of LH2 releases[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12497-12510. |
4 | 邵翔宇, 蒲亮, 雷刚, 等. 液氢泄漏事故中氢气可燃云团的扩散规律研究[J]. 西安交通大学学报, 2018, 52(9): 102-108. |
Shao X Y, Pu L, Lei G, et al. Investigation on the hydrogen flammable cloud dispersion in liquid hydrogen leakage accident[J]. Journal of Xi’an Jiaotong University, 2018, 52(9): 102-108. | |
5 | Witcofski R D, Chirivella J E. Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills[J]. International Journal of Hydrogen Energy, 1984, 9(5): 425-435. |
6 | Statharas J C, Venetsanos A G, Bartzis J G, et al. Analysis of data from spilling experiments performed with liquid hydrogen[J]. Journal of Hazardous Materials, 2000, 77(1/2/3): 57-75. |
7 | Schmidtchen U, Marinescu-Pasoi L, Verfondern K, et al. Simulation of accidental spills of cryogenic hydrogen in a residential area[J]. Cryogenics, 1994, 34: 401-404. |
8 | Hooker P, Willoughby D, Royle M. Experimental releases of liquid hydrogen[C]//International Conference on Hydrogen Safety. United Kingdom: British Crown, 2011. |
9 | Hall J E, Hooker P, Willoughby D. Ignited releases of liquid hydrogen: safety considerations of thermal and overpressure effects[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20547-20553. |
10 | Middha P, Hansen O R. Using computational fluid dynamics as a tool for hydrogen safety studies[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 295-302. |
11 | Yuan W H, Li J F, Zhang R P, et al. Numerical investigation of the leakage and explosion scenarios in China’s first liquid hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2022, 47(43): 18786-18798. |
12 | Li Z Y, Pan X M, Ma J X. Quantitative risk assessment on a gaseous hydrogen refueling station in Shanghai[J]. International Journal of Hydrogen Energy, 2010, 35(13): 6822-6829. |
13 | Suzuki T, Shiota K, Izato Y I, et al. Quantitative risk assessment using a Japanese hydrogen refueling station model[J]. International Journal of Hydrogen Energy, 2021, 46(11): 8329-8343. |
14 | 柯道友, 毕景良, 李雪芳. 氢气泄漏过程的理论模型计算及CFD模拟[J]. 化工学报, 2013, 64(9): 3088-3095. |
David M C, Bi J L, Li X F. Integral model and CFD simulations for hydrogen leaks[J]. CIESC Journal, 2013, 64(9): 3088-3095. | |
15 | 王振华, 蒋军成, 尤飞, 等. 高压氢气储运设施泄漏喷射火过程预测模型及其验证[J]. 化工学报, 2021, 72(10): 5412-5423. |
Wang Z H, Jiang J C, You F, et al. Prediction model for the process of jet fire induced by the leakage of high-pressure hydrogen storage and transportation facilities and its validation[J]. CIESC Journal, 2021, 72(10): 5412-5423. | |
16 | 何倩. 低温压缩氢泄漏射流与爆炸事故研究[D]. 济南: 山东大学, 2021. |
He Q. Study on cryo-compressed hydrogen releases and explosions[D]. Jinan: Shandong University, 2021. | |
17 | Stanley W W Jr. Modeling leaks from liquid hydrogen storage systems[R]. Office of Scientific and Technical Information (OSTI), 2009. |
18 | Nakamichi K, Kihara Y, Okamura T. Observation of liquid hydrogen jet on flashing and evaporation characteristics[J]. Cryogenics, 2008, 48(1/2): 26-30. |
19 | Winters W S, Houf W G. Simulation of small-scale releases from liquid hydrogen storage systems[J]. International Journal of Hydrogen Energy, 2011, 36(6): 3913-3921. |
20 | Holborn P G, Benson C M, Ingram J M. Modelling hazardous distances for large-scale liquid hydrogen pool releases[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23851-23871. |
21 | Pu L, Shao X Y, Zhang S Q, et al. Plume dispersion behaviour and hazard identification for large quantities of liquid hydrogen leakage[J]. Asia-Pacific Journal of Chemical Engineering, 2019, 14(2): e2299. |
22 | Liu Y L, Liu Z, Wei J J, et al. Evaluation and prediction of the safe distance in liquid hydrogen spill accident[J]. Process Safety and Environmental Protection, 2021, 146: 1-8. |
23 | Jin T, Liu Y L, Wei J J, et al. Modeling and analysis of the flammable vapor cloud formed by liquid hydrogen spills[J]. International Journal of Hydrogen Energy, 2017, 42(43): 26762-26770. |
24 | Stoffen P G. Guidelines for Quantitative Risk Assessment[M].Netherland: Ministerie van Volkshuisvesting Ruimtelijke Ordening en Milieu, 2005. |
25 | Baraldi D, Venetsanos A G, Papanikolaou E, et al. Numerical analysis of release, dispersion and combustion of liquid hydrogen in a mock-up hydrogen refuelling station[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 303-315. |
26 | Tang X, Pu L, Shao X Y, et al. Dispersion behavior and safety study of liquid hydrogen leakage under different application situations[J]. International Journal of Hydrogen Energy, 2020, 45(55): 31278-31288. |
27 | Ichard M, Hansen O R, Middha P, et al. CFD computations of liquid hydrogen releases[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17380-17389. |
28 | Hansen O R. Liquid hydrogen releases show dense gas behavior[J]. International Journal of Hydrogen Energy, 2020, 45(2): 1343-1358. |
29 | Giannissi S G, Venetsanos A G, Markatos N, et al. CFD modeling of hydrogen dispersion under cryogenic release conditions[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15851-15863. |
30 | Giannissi S G, Venetsanos A G, Markatos N, et al. Numerical simulation of LNG dispersion under two-phase release conditions[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 245-254. |
31 | Giannissi S G, Venetsanos A G. A comparative CFD assessment study of cryogenic hydrogen and LNG dispersion[J]. International Journal of Hydrogen Energy, 2019, 44(17): 9018-9030. |
32 | Wang J J, Li Y Z, Wang L, et al. Numerical investigation on subcooled pool film boiling of liquid hydrogen in different gravities[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2646-2657. |
33 | Lemmon E W, Bell I H, Huber M L, et al. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0 [DB]. Gaithersburg: National Institute of Standards and Technology, 2018. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||