CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5167-5176.DOI: 10.11949/0438-1157.20220758
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Ting CHEN1(), Zehao HU2, Zhe QIN1, Yuanhong CHEN1, Yanqiao XU2, Jian LIN1, Zhixiang XIE3()
Received:
2022-05-30
Revised:
2022-09-26
Online:
2022-12-06
Published:
2022-11-05
Contact:
Zhixiang XIE
陈婷1(), 胡泽浩2, 秦喆1, 陈园虹1, 徐彦乔2, 林坚1, 谢志翔3()
通讯作者:
谢志翔
作者简介:
陈婷(1984—),女,博士,副教授,chenting@mail.usts.edu.cn
基金资助:
CLC Number:
Ting CHEN, Zehao HU, Zhe QIN, Yuanhong CHEN, Yanqiao XU, Jian LIN, Zhixiang XIE. Microwave synthesis of AgInS2 quantum dots in organic solvent and application for white light-emitting diodes[J]. CIESC Journal, 2022, 73(11): 5167-5176.
陈婷, 胡泽浩, 秦喆, 陈园虹, 徐彦乔, 林坚, 谢志翔. 有机相微波合成AgInS2量子点及其白光发光二极管应用研究[J]. 化工学报, 2022, 73(11): 5167-5176.
Add to citation manager EndNote|Ris|BibTeX
QDs | CIE | CRI | LE/(lm/W) | CCT/K | Ref. |
---|---|---|---|---|---|
CdSe | — | 90.1 | 14 | 8864 | [ |
CdS | — | 87.9 | 0.233 | 5000 | [ |
CdSe@ZnS | (0.34, 0.34) | — | 66 | — | [ |
ZnCdSe | — | 81 | 57 | 4000 | [ |
ZnSe | (0.38, 0.41) | — | — | — | [ |
InP@ZnS | — | 86 | 53 | 3200~6500 | [ |
InP@ZnSe@ZnS | (0.34, 0.33) | 90 | — | 5313 | [ |
AIS@ZnS | (0.39, 0.36) | 87.5 | — | 3669 | [ |
AIS@ZnS | (0.38, 0.38) | 83.31 | 74.90 | 3823 | this work |
Table 1 Comparison of CRI, CCT, LE and CIE coordinate of WLEDs based on QDs
QDs | CIE | CRI | LE/(lm/W) | CCT/K | Ref. |
---|---|---|---|---|---|
CdSe | — | 90.1 | 14 | 8864 | [ |
CdS | — | 87.9 | 0.233 | 5000 | [ |
CdSe@ZnS | (0.34, 0.34) | — | 66 | — | [ |
ZnCdSe | — | 81 | 57 | 4000 | [ |
ZnSe | (0.38, 0.41) | — | — | — | [ |
InP@ZnS | — | 86 | 53 | 3200~6500 | [ |
InP@ZnSe@ZnS | (0.34, 0.33) | 90 | — | 5313 | [ |
AIS@ZnS | (0.39, 0.36) | 87.5 | — | 3669 | [ |
AIS@ZnS | (0.38, 0.38) | 83.31 | 74.90 | 3823 | this work |
1 | Regulacio M D, Win K Y, Lo S L, et al. Aqueous synthesis of highly luminescent AgInS₂-ZnS quantum dots and their biological applications[J]. Nanoscale, 2013, 5(6): 2322-2327. |
2 | 程焱华, 谢斌, 罗小兵. 高显色指数高光效的新型量子点转换LED[J]. 化工学报, 2017, 68(S1): 247-253. |
Cheng Y H, Xie B, Luo X B. New quantum dots-converted light-emitting diodes with high color rendering index and high efficiency[J]. CIESC Journal, 2017, 68(S1): 247-253. | |
3 | Mir I A, Radhakrishanan V S, Rawat K, et al. Bandgap tunable AgInS based quantum dots for high contrast cell imaging with enhanced photodynamic and antifungal applications[J]. Scientific Reports, 2018, 8: 9322. |
4 | Xia L, Tong X, Li X, et al. Synergistic tailoring of band structure and charge carrier extraction in “green” core/shell quantum dots for highly efficient solar energy conversion[J]. Chemical Engineering Journal, 2022, 442: 136214. |
5 | Su D L, Wang L, Li M, et al. Highly luminescent water-soluble AgInS2/ZnS quantum dots-hydrogel composites for warm white LEDs[J]. Journal of Alloys and Compounds, 2020, 824: 153896. |
6 | Li T T, He H, Zhang P M, et al. The synergy of step-scheme heterojunction and sulfur vacancies in AgInS2/AgIn5S8 for highly efficient photocatalytic degradation of oxytetracycline[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646: 128946. |
7 | Jones C M S, Panov N, Skripka A, et al. Effect of light scattering on upconversion photoluminescence quantum yield in microscale-to-nanoscale materials[J]. Optics Express, 2020, 28(15): 22803-22818. |
8 | Ruan C, Zhang Y, Lu M, et al. White light-emitting diodes based on AgInS₂/ZnS quantum dots with improved bandwidth in visible light communication[J]. Nanomaterials (Basel, Switzerland), 2016, 6(1): 13. |
9 | Hu X B, Chen T, Xu Y Q, et al. Hydrothermal synthesis of bright and stable AgInS2 quantum dots with tunable visible emission[J]. Journal of Luminescence, 2018, 200: 189-195. |
10 | Huong T T T, Loan N T, Long L V, et al. Highly luminescent air-stable AgInS2/ZnS core/shell nanocrystals for grow lights[J]. Optical Materials, 2022, 130: 112564. |
11 | Huong T T T, Loan N T, Ung T, et al. Systematic synthesis of different-sized AgInS2/GaS x nanocrystals for emitting the strong and narrow excitonic luminescence[J]. Nanotechnology, 2022, 33(35): 2022, 33(35): 355704. |
12 | Zhu Y J, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase[J]. Chemical Reviews, 2014, 114(12): 6462-6555. |
13 | Latha M, Devi R A, Velumani S. Hot injection synthesis of Cu(In, Ga)Se2 nanocrystals with tunable bandgap[J]. Optical Materials, 2018, 79: 450-456. |
14 | Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088-4093. |
15 | Jain S, Bharti S, Bhullar G K, et al.Ⅰ-Ⅲ-Ⅵ core/shell QDs: synthesis, characterizations and applications[J]. Journal of Luminescence, 2020, 219: 116912. |
16 | Torimoto T, Adachi T, Okazaki K I, et al. Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore[J]. Journal of the American Chemical Society, 2007, 129(41): 12388-12389. |
17 | Gantassi A, Essaidi H, Ben Hamed Z, et al. Growth and characterization of single phase AgInS2 crystals for energy conversion application through β-In2S3 by thermal evaporation[J]. Journal of Crystal Growth, 2015, 413: 51-60. |
18 | Kharkwal A, Nitu, Jain K, et al. Novel synthesis of selective phase-shape orientation of AgInS2 nanoparticles at low temperature[J]. Colloid and Polymer Science, 2015, 293(7): 1953-1959. |
19 | Xiang W D, Yang H L, Liang X J, et al. Direct synthesis of highly luminescent Cu-Zn-In-S quaternary nanocrystals with tunable photoluminescence spectra and decay times[J]. Journal of Materials Chemistry C, 2013, 1(10): 2014-2020. |
20 | Yang W M, Zhang B, Ding N, et al. Fast synthesize ZnO quantum dots via ultrasonic method[J]. Ultrasonics Sonochemistry, 2016, 30: 103-112. |
21 | Yu Y L, Xu L R, Chen J, et al. Hydrothermal synthesis of GSH-TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells[J]. Colloids and Surfaces B: Biointerfaces, 2012, 95: 247-253. |
22 | Olkhovets A, Hsu R C, Lipovskii A, et al. Size-dependent temperature variation of the energy gap in lead-salt quantum dots[J]. Physical Review Letters, 1998, 81(16): 3539-3542. |
23 | Mao B D, Chuang C H, Lu F, et al. Study of the partial Ag-to-Zn cation exchange in AgInS2/ZnS nanocrystals[J]. The Journal of Physical Chemistry C, 2013, 117(1): 648-656. |
24 | Ilaiyaraja P, Das T K, Mocherla P S V, et al. Optical whispering gallery-enabled enhanced photovoltaic efficiency of CdS-CuInS2 thin film-sensitized whisperonic solar cells[J]. The Journal of Physical Chemistry C, 2019, 123(3): 1579-1586. |
25 | Hamanaka Y, Watanabe K, Kuzuya T. Luminescence enhancement mechanisms of AgInS2/ZnS core/shell nanoparticles fabricated by suppressing quaternary alloying[J]. Journal of Luminescence, 2020, 217: 116794. |
26 | Soares J X, Wegner K D, Ribeiro D S M, et al. Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control[J]. Nano Research, 2020, 13(9): 2438-2450. |
27 | Soheyli E, Ghaemi B, Sahraei R, et al. Colloidal synthesis of tunably luminescent AgInS-based/ZnS core/shell quantum dots as biocompatible nano-probe for high-contrast fluorescence bioimaging[J]. Materials Science and Engineering: C, 2020, 111: 110807. |
28 | Wang X, Xie C P, Zhong J S, et al. Synthesis and temporal evolution of Zn-doped AgInS2 quantum dots[J]. Journal of Alloys and Compounds, 2015, 648: 127-133. |
29 | Pearson R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85(22): 3533-3539. |
30 | Hirase A, Hamanaka Y, Kuzuya T. Ligand-induced luminescence transformation in AgInS2 nanoparticles: from defect emission to band-edge emission[J]. The Journal of Physical Chemistry Letters, 2020, 11(10): 3969-3974. |
31 | Pal N K, Kryschi C. A facile one-pot synthesis of blue and red luminescent thiol stabilized gold nanoclusters: a thorough optical and microscopy study[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(33): 21423-21431. |
32 | Pretsch E, Bühlmann P, Badertscher M. Structure Determination of Organic Compounds: Tables of Spectral Data [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. |
33 | Zhang R, Lin H, Yu Y L, et al. A new-generation color converter for high-power white LED: transparent Ce3+: YAG phosphor-in-glass[J]. Laser & Photonics Reviews, 2014, 8(1): 158-164. |
34 | Hu Z, Lu H X, Zhou W J, et al. Aqueous synthesis of 79% efficient AgInGaS/ZnS quantum dots for extremely high color rendering white light-emitting diodes[J]. Journal of Materials Science & Technology, 2023, 134: 189-196. |
35 | Jang H S, Yang H, Kim S W, et al. White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5: Ce3+, Li+ phosphors[J]. Advanced Materials, 2008, 20(14): 2696-2702. |
36 | Li F, Nie C, You L, et al. White light emitting device based on single-phase CdS quantum dots[J]. Nanotechnology, 2018, 29(20): 205701. |
37 | Chung S R, Chen S S, Wang K W, et al. Promotion of solid-state lighting for ZnCdSe quantum dot modified-YAG-based white light-emitting diodes[J]. RSC Advances, 2016, 6(57): 51989-51996. |
38 | Chen H S, Wang S J J, Lo C J, et al. White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes[J]. Applied Physics Letters, 2005, 86(13): 131905. |
39 | Ziegler J, Xu S, Kucur E, et al. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs[J]. Advanced Materials, 2008, 20(21): 4068-4073. |
40 | Yin L Q, Zhang D D, Yan Y X, et al. Applying InP/ZnS green-emitting quantum dots and InP/ZnSe/ZnS red-emitting quantum dots to prepare WLED with enhanced photoluminescence performances[J]. IEEE Access, 2020, 8: 154683-154690. |
[1] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[2] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[3] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[4] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[5] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[6] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[7] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[8] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[9] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[10] | Shuangqiao YANG, Baojie WEI, Dawei XU, Li LI, Qi WANG. Application of aluminum-plastic packaging and new recycling technology of the waste [J]. CIESC Journal, 2022, 73(8): 3326-3337. |
[11] | Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries [J]. CIESC Journal, 2022, 73(8): 3369-3380. |
[12] | Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres [J]. CIESC Journal, 2022, 73(8): 3636-3646. |
[13] | Renjie GU, Jiawei ZHANG, Xueyang JIN, Lixiong WEN. Synthesis of nickel-cobalt hydroxide composites as supercapacitor materials by micro-impinging stream reactors and their performance study [J]. CIESC Journal, 2022, 73(8): 3749-3757. |
[14] | Zhenhe XU, Hongjiang LI, Yu GAO, Zheng LI, Hanyan ZHANG, Baotong XU, Fu DING, Yaguang SUN. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis [J]. CIESC Journal, 2022, 73(8): 3625-3635. |
[15] | Duanhui GAO, Weiqiang XIAO, Feng GAO, Qian XIA, Manqiu WANG, Xinbo LU, Xiaoli ZHAN, Qinghua ZHANG. Preparation and application of polyimide-based aerogels [J]. CIESC Journal, 2022, 73(7): 2757-2773. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||