1 |
张磊, 贺丁, 刘琳琳, 等. 基于模型的化工产品设计方法: 综述与展望[J]. 化工进展, 2021, 40(4): 1746-1754.
|
|
Zhang L, He D, Liu L L, et al. Model-based chemical product design—review and perspectives[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1746-1754.
|
2 |
Carbó-Dorca R. Non-linear terms & variational approach in quantum QSPR[J]. Journal of Mathematical Chemistry, 2004, 36(3): 241-260.
|
3 |
Blumberger J. Free energies for biological electron transfer from QM/MM calculation: method, application and critical assessment[J]. Physical Chemistry Chemical Physics, 2008, 10(37): 5651-5667.
|
4 |
Giddings J C, Eyring H. A molecular dynamic theory of chromatography[J]. The Journal of Physical Chemistry, 2002, 59(5): 416-421.
|
5 |
Hansson T. Molecular dynamics simulations[J]. Current Opinion in Structural Biology, 2002, 12(2): 190-196.
|
6 |
Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[EB/OL]. arXiv:1301.3781v3. .
|
7 |
Schuster M, Paliwal K K. Bidirectional recurrent neural networks[J]. IEEE transactions on Signal Processing, 1997, 45(11): 2673-2681.
|
8 |
Santana M V, Silva-Jr F P. De novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent neural network-based transfer learning[J]. BMC Chemistry, 2021, 15(1): 1-20.
|
9 |
Alsenan S, Al-Turaiki I, Hafez A. A recurrent neural network model to predict blood-brain barrier permeability[J]. Computational Biology and Chemistry, 2020, 89: 107377.
|
10 |
Li Z, Jiang M, Wang S, et al. Deep learning methods for molecular representation and property prediction[J]. Drug Discovery Today, 2022, 27(12): 103373.
|
11 |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
12 |
Fukushima K, Miyake S. Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition[M]//Competition and Cooperation in Neural Nets. Berlin, Heidelberg: Springer, 1982: 267-285.
|
13 |
LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.
|
14 |
Lawrence S, Giles C L, Tsoi A C, et al. Face recognition: a convolutional neural-network approach[J]. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113.
|
15 |
Goh G B, Hodas N O, Siegel C, et al. SMILES2Vec: an interpretable general-purpose deep neural network for predicting chemical properties[EB/OL]. arXiv: 1712.02034,2017. .
|
16 |
Jaeger S, Fulle S, Turk S. Mol2vec: unsupervised machine learning approach with chemical intuition[J]. Journal of Chemical Information and Modeling, 2018, 58(1): 27-35.
|
17 |
Rogers D, Hahn M. Extended-connectivity fingerprints[J]. Journal of Chemical Information and Modeling, 2010, 50(5): 742-754.
|
18 |
Zhang S, Tong H H, Xu J J, et al. Graph convolutional networks: a comprehensive review[J]. Computational Social Networks, 2019, 6: 11.
|
19 |
Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[EB/OL]. arXiv: 1710.10903, 2017. .
|
20 |
Joback K G, Robert C R. Estimation of pure-component properties from group-contributions[J]. Chemical Engineering Communications, 1987, 57(1/2/3/4/5/6): 233-243.
|
21 |
Constantinou L, Gani R. New group contribution method for estimating properties of pure compounds[J]. AIChE Journal, 1994, 40(10): 1697-1710.
|
22 |
Marrero J, Gani R. Group-contribution based estimation of pure component properties[J]. Fluid Phase Equilibria, 2001, 183: 183-208.
|
23 |
Liu Q L, Jiang Y K, Zhang L, et al. A computational toolbox for molecular property prediction based on quantum mechanics and quantitative structure-property relationship[J]. Frontiers of Chemical Science and Engineering, 2022, 16(2): 152-167.
|
24 |
Niu Z, Zhong G, Yu H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62.
|
25 |
Ruddigkeit L, van Deursen R, Blum L C, et al. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17[J]. Journal of Chemical Information and Modeling, 2012, 52(11): 2864-2875.
|
26 |
Wu Z Q, Ramsundar B, Feinberg E N, et al. MoleculeNet: a benchmark for molecular machine learning[J]. Chemical Science, 2017, 9(2): 513-530.
|
27 |
Mansouri K, Grulke C M, Judson R S, et al. OPERA models for predicting physicochemical properties and environmental fate endpoints[J]. Journal of Cheminformatics, 2018, 10(1): 10.
|
28 |
Landrum G. RDKit: open-source cheminformatics software[EB/OL]. .
|
29 |
Oliphant T E. Python for scientific computing[J]. Computing in Science & Engineering, 2007, 9(3): 10-20.
|
30 |
Chauhan V K, Dahiya K, Sharma A. Problem formulations and solvers in linear SVM: a review[J]. Artificial Intelligence Review, 2019, 52(2) : 803-855.
|