CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1195-1204.DOI: 10.11949/0438-1157.20221340
• Process system engineering • Previous Articles Next Articles
Zhongqiu ZHANG(), Hongguang LI(), Yilin SHI
Received:
2022-10-10
Revised:
2022-12-27
Online:
2023-04-19
Published:
2023-03-05
Contact:
Hongguang LI
通讯作者:
李宏光
作者简介:
张中秋(1998—),男,硕士研究生,sleep_earily@163.com
CLC Number:
Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies[J]. CIESC Journal, 2023, 74(3): 1195-1204.
张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204.
Add to citation manager EndNote|Ris|BibTeX
变量 | 描述 | 作用 |
---|---|---|
T3 | 物料出口温度 | 被控变量CV |
F1 | 物料入口流量 | 扰动变量DV1 |
T1 | 物料入口温度 | 扰动变量DV2 |
F2 | 冷却液流量 | 操纵变量MV |
Table 1 Descriptions of process variables
变量 | 描述 | 作用 |
---|---|---|
T3 | 物料出口温度 | 被控变量CV |
F1 | 物料入口流量 | 扰动变量DV1 |
T1 | 物料入口温度 | 扰动变量DV2 |
F2 | 冷却液流量 | 操纵变量MV |
项目 | MSE | IAE |
---|---|---|
人工操纵经验 | 0.07496 | 3015 |
LSTM-MNC策略 | 0.07414 | 3017 |
Table 2 Comparative performances of learned manipulating strategies with manual experienced manipulations
项目 | MSE | IAE |
---|---|---|
人工操纵经验 | 0.07496 | 3015 |
LSTM-MNC策略 | 0.07414 | 3017 |
1 | 侯忠生, 许建新. 数据驱动控制理论及方法的回顾和展望[J]. 自动化学报, 2009, 35(6): 650-667. |
Hou Z S, Xu J X. On data-driven control theory: the state of the art and perspective[J]. Acta Automatica Sinica, 2009, 35(6): 650-667. | |
2 | Yu T Y, Xu Z H, Zhao J, et al. A fast, fully distributed nonlinear model predictive control algorithm with parametric sensitivity through Jacobi iteration[J]. Journal of Process Control, 2022, 110: 133-153. |
3 | Cisneros P S G, Werner H. Nonlinear model predictive control for models in quasi‐linear parameter varying form[J]. International Journal of Robust and Nonlinear Control, 2020, 30(10): 3945-3959. |
4 | 戴文战, 娄海川, 杨爱萍. 非线性系统神经网络预测控制研究进展[J]. 控制理论与应用, 2009, 26(5): 521-530. |
Dai W Z, Lou H C, Yang A P. An overview of neural network predictive control for nonlinear systems[J]. Control Theory & Applications, 2009, 26(5): 521-530. | |
5 | Wang Y M, Qing D D. Model predictive control of nonlinear system based on GA-RBP neural network and improved gradient descent method[J]. Complexity, 2021, 2021: 6622149. |
6 | 姚羽曼, 罗文嘉, 戴一阳. 数据驱动方法在化工过程故障诊断中的研究进展[J]. 化工进展, 2021, 40(4): 1755-1764. |
Yao Y M, Luo W J, Dai Y Y. Research progress of data-driven methods in fault diagnosis of chemical process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1755-1764. | |
7 | 朱坚, 杨博, 王永健, 等. 一种新型的基于Levenshtein距离层次聚类的时序操作优化方法[J]. 化工学报, 2019, 70(2): 581-589. |
Zhu J, Yang B, Wang Y J, et al. New operation optimization method with time series based on Levenshtein distance hierarchical clustering[J]. CIESC Journal, 2019, 70(2): 581-589. | |
8 | Li H G, Tang X J, Zhao W J, et al. Approaches to deep learning based manipulating strategy reconstructions for complex chemical processes[J]. Journal of Process Control, 2021, 107: 127-140. |
9 | Lin C W, Li T H S, Chen C. Feedback linearization and feedforward neural network control with application to twin rotor mechanism[J]. Transactions of the Institute of Measurement and Control, 2018, 40: 351-362. |
10 | Fu X G, Li S H, Wunsch D C, et al. Local stability and convergence analysis of neural network controllers with error integral inputs[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, DOI: 10.1109/TNNLS.2021.3116189 . |
11 | Xiang W M, Tran H D, Yang X D, et al. Reachable set estimation for neural network control systems: a simulation-guided approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 1821-1830. |
12 | Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
13 | Lee Y, Choi Y, Cho H, et al. Prediction of distillation column temperature using machine learning and data preprocessing[J]. Korean Chemical Engineering Reserach, 2021, 59(2) : 191-199. |
14 | Guo J W, Wang W, Tang Y Y, et al. A CNN-Bi_LSTM parallel network approach for train travel time prediction[J]. Knowledge-Based Systems, 2022, 256: 109796. |
15 | Tao L, Tian G, Aberer K. Hybrid neural networks for learning the local trend in time series[C]// Proceedings of the Twenty-sixth International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 2273-2279. |
16 | Li H G, Zhao W J, Shi Y L, et al. MP-CRJ: multi-parallel cycle reservoirs with jumps for industrial multivariate time series predictions[J]. Transactions of the Institute of Measurement and Control, 2022, 44(11): 2093-2105. |
17 | Wei D, Ma J M, Jiao H Y, et al. Model predictive control for multi-zone variable air volume systems based on artificial neural networks[J]. Journal of Process Control, 2022, 118: 185-201. |
18 | Jin U K, Jung J H, Kim M, et al. Multi-task learning of classification and denoising (MLCD) for noise-robust rotor system diagnosis[J]. Computers in Industry, 2021, 125: 103385. |
19 | Ishihara K, Kanervisto A, Miura J, et al. Multi-task learning with attention for end-to-end autonomous driving[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Nashville, TN, USA: IEEE, 2021: 2896-2905. |
20 | Dai J F, He K M, Sun J. Instance-aware semantic segmentation via multi-task network cascades[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 3150-3158. |
21 | Khoshkangini R, Mashhadi P, Tegnered D, et al. Predicting vehicle behavior using multi-task ensemble learning[J]. Expert Systems with Applications, 2023, 212: 118716. |
22 | Chen J, Yu Y X, Guo Q. Freeway traffic congestion reduction and environment regulation via model predictive control[J]. Algorithms, 2019, 12: 220. |
23 | Liu P F, Qiu X P, Huang X J. Adversarial multi-task learning for text classification[EB/OL]. 2017, . |
24 | Liu S, Johns E, Davison A J. End-to-end multi-task learning with attention[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. |
25 | Liu S C, Liang Y Y, Gitter A. Loss-balanced task weighting to reduce negative transfer in multi-task learning[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, California, USA: AAAI Press, 2019. |
26 | Yang P P, Huang K Z, Hussain A. A review on multi-task metric learning[J]. Big Data Analytics, 2018, 3(1) : 1-23. |
27 | Farhi L, Abbasi H, Rehman R. Smart identity management system by face detection using multitasking convolution network[J]. Security and Communication Networks, 2021, 2021: 7314823. |
28 | Sgaard A, Goldberg Y. Deep multi-task learning with low level tasks supervised at lower layers[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2016: 231-235. |
29 | 李龙. 基于过程挖掘的工业过程运行知识发现方法及应用[D]. 北京: 北京化工大学, 2021. |
Li L. Process mining based industrial process operating knowledge discovery method and application[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
30 | Wen M, Li P, Zhang L F, et al. Stock market trend prediction using high-order information of time series[J]. IEEE Access, 2019, 7: 28299-28308. |
31 | Li L, Su X N, Zhang Y, et al. Trend modeling for traffic time series analysis: an integrated study[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3430-3439. |
32 | Liu J, Li T R, Yuan Z, et al. Symbolic aggregate approximation based data fusion model for dangerous driving behavior detection[J]. Information Sciences, 2022, 609: 626-643. |
33 | Lin J, Keogh E, Wei L, et al. Experiencing SAX: a novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15(2): 107-144. |
34 | Keogh E, Kasetty S. On the need for time series data mining benchmarks: a survey and empirical demonstration[J]. Data Mining and Knowledge Discovery, 2003, 7(4): 349-371. |
35 | Zhang Y, Gallimore M, Bingham C, et al. Hybrid hierarchical clustering—piecewise aggregate approximation, with applications[J]. International Journal of Computational Intelligence and Applications, 2016, 15(4) : 26. |
36 | 李海林, 郭崇慧. 基于云模型的时间序列分段聚合近似方法[J]. 控制与决策, 2011, 26(10): 1525-1529. |
Li H L, Guo C H. Piecewise aggregate approximation method based on cloud model for time series[J]. Control and Decision, 2011, 26(10): 1525-1529. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[4] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[5] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[6] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[7] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[8] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[9] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[10] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[11] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
[12] | Miao LI, Hong ZHAO, Biao JIANG, Siyuan CHEN, Long YAN. Thermodynamic analysis on synthesis of key intermediate BaC2 in coal to acetylene [J]. CIESC Journal, 2022, 73(5): 1908-1919. |
[13] | Jiansong WANG, Feng XU, Xionglin LUO. Controller parameter self-tuning when control loop mode switching for multi-loop PID control system of chemical process [J]. CIESC Journal, 2022, 73(4): 1647-1657. |
[14] | Cheng ZHANG, Lizhi PAN, Yuan LI. Fault detection and diagnosis method based on weighted statistical feature KICA [J]. CIESC Journal, 2022, 73(2): 827-837. |
[15] | Xingshuo ZHANG, Xionglin LUO, Feng XU. Simulation closer to commercial process and prior process analysis based control loop configuration of FCCU reactor-regenerator system [J]. CIESC Journal, 2022, 73(2): 747-758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||