CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1561-1569.DOI: 10.11949/0438-1157.20221300
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Huizhu YANG1(), Jingling LAN2(), Yue YANG1, Jialin LIANG1, Chuanwen LYU1, Yonggang ZHU1()
Received:
2022-09-27
Revised:
2023-03-10
Online:
2023-06-02
Published:
2023-04-05
Contact:
Huizhu YANG, Yonggang ZHU
杨辉著1(), 兰精灵2(), 杨月1, 梁嘉林1, 吕传文1, 朱永刚1()
通讯作者:
杨辉著,朱永刚
作者简介:
杨辉著(1988—),男,博士,助理教授,yanghuizhu@hit.edu.cn基金资助:
CLC Number:
Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe[J]. CIESC Journal, 2023, 74(4): 1561-1569.
杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569.
参数 | 数值 |
---|---|
热管外尺寸长度/mm | 156 |
热管外尺寸宽度/mm | 36 |
上管壳厚度/mm | 1.5 |
下管壳厚度/mm | 1 |
空腔厚度/mm | 5 |
吸液芯厚度/mm | 0.5 |
放置方向 | 顺重力、水平、逆重力 |
充液率/% | 5、10、20、30 |
加热功率/ W | 10~300 |
Table 1 Parameters of heat pipe
参数 | 数值 |
---|---|
热管外尺寸长度/mm | 156 |
热管外尺寸宽度/mm | 36 |
上管壳厚度/mm | 1.5 |
下管壳厚度/mm | 1 |
空腔厚度/mm | 5 |
吸液芯厚度/mm | 0.5 |
放置方向 | 顺重力、水平、逆重力 |
充液率/% | 5、10、20、30 |
加热功率/ W | 10~300 |
1 | Faghri A. Review and advances in heat pipe science and technology[J]. Journal of Heat Transfer, 2012, 134(12): 123001. |
2 | Vasiliev L, Lossouarn D, Romestant C, et al. Loop heat pipe for cooling of high-power electronic components[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 301-308. |
3 | Tang H, Tang Y, Wan Z, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223: 383-400. |
4 | Chan C W, Siqueiros E, Ling-Chin J, et al. Heat utilisation technologies: a critical review of heat pipes[J]. Renewable & Sustainable Energy Reviews, 2015, 50: 615-627. |
5 | Chen X, Ye H, Fan X, et al. A review of small heat pipes for electronics[J]. Applied Thermal Engineering, 2016, 96: 1-17. |
6 | Tang H, Tang Y, Yuan W, et al. Fabrication and capillary characterization of axially micro-grooved wicks for aluminium flat-plate heat pipes[J]. Applied Thermal Engineering, 2018, 129: 907-915. |
7 | Lurie S A, Rabinskiy L N, Solyaev Y O. Topology optimization of the wick geometry in a flat plate heat pipe[J]. International Journal of Heat and Mass Transfer, 2019, 128: 239-247. |
8 | Moon S H, Park Y W, Rhi S H. The carbon wire bundle’s constructing as a capillary wick in the flat thin heat pipe[J]. Applied Thermal Engineering, 2017, 126: 1177-1184. |
9 | 曹海亮, 张红飞, 左潜龙, 等. 梯形微槽道表面池沸腾换热性能研究[J]. 化工学报, 2021, 72(8): 4111-4120. |
Cao H L, Zhang H F, Zuo Q L, et al. Study on pool boiling heat transfer performance of trapezoidal microchannel surface[J]. CIESC Journal, 2021, 72(8): 4111-4120. | |
10 | 李孝军, 屈健, 韩新月, 等. 微槽道脉动热管的启动及传热特性[J]. 化工学报, 2016, 67(6): 2263-2270. |
Li X J, Qu J, Han X Y, et al. Start-up and heat transfer performance of micro-grooved oscillating heat pipe[J]. CIESC Journal, 2016, 67(6): 2263-2270. | |
11 | Siavashi M, Bahrami H, Aminian E. Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams[J]. Applied Thermal Engineering, 2018, 138: 465-474. |
12 | 赵雅鑫, 赖展程, 胡海涛. R1234ze(E)在泡沫金属管内的流动沸腾换热和压降特性[J]. 化工学报, 2021, 72(10): 5074-5081. |
Zhao Y X, Lai Z C, Hu H T. Flow boiling heat transfer and pressure drop characteristics of R1234ze(E) in metal foam filled tubes[J]. CIESC Journal, 2021, 72(10): 5074-5081. | |
13 | 朱明汉, 白鹏飞, 胡艳鑫, 等. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357. |
Zhu M H, Bai P F, Hu Y X, et al. Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick[J]. CIESC Journal, 2019, 70(4): 1349-1357. | |
14 | 刘腾庆, 闫文韬, 杨鑫, 等. 强化平板热管传热性能的研究进展[J]. 化工学报, 2021, 72(11): 5468-5480. |
Liu T Q, Yan W T, Yang X, et al. Research progress on enhanced thermal performance of flat plate heat pipe[J]. CIESC Journal, 2021, 72(11): 5468-5480. | |
15 | Li Y, He H F, Zeng Z X. Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick[J]. Applied Thermal Engineering, 2013, 50(1): 342-351. |
16 | Zhang S, Chen J, Sun Y, et al. Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe[J]. Renewable Energy, 2019, 135(12): 1133-1143. |
17 | Yao S G, Deng J W. Experimental investigation on the heat transfer performance of heat pipes with porous copper foam wicks[J]. Materials Research Innovations, 2015, 19(sup5): 617-622. |
18 | 宋赫, 董景明, 韩志涛, 等. 烧结参数对镍粉毛细芯性能的影响[J]. 化工学报, 2017, 68(S1): 178-183. |
Song H, Dong J M, Han Z T, et al. Effects of sintering parameters on performance of Ni porous wick[J]. CIESC Journal, 2017, 68(S1): 178-183. | |
19 | Zhang Y, Du Y, Shum C, et al. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate[J]. Scientific Reports, 2016, 6: 24972. |
20 | 马奕新, 金宇, 张虎, 等. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601. |
Ma Y X, Jin Y, Zhang H, et al. Experimental study on heat transfer performance of finned gravity heat pipe[J]. CIESC Journal, 2020, 71(2): 594-601. | |
21 | Tharayil T, Asirvatham L G, Cassie C F M, et al. Performance of cylindrical and flattened heat pipes at various inclinations including repeatability in anti-gravity—a comparative study[J]. Applied Thermal Engineering, 2017, 122: 685-696. |
22 | Wang H, Bai P, Zhou H, et al. An integrated heat pipe coupling the vapor chamber and two cylindrical heat pipes with high anti-gravity thermal performance[J]. Applied Thermal Engineering, 2019, 159: 113816. |
23 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 热管传热性能试验方法: [S]. 北京: 中国标准出版社, 2009. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Testing method for heat transfer performance of heat pipes: [S]. Beijing: Standards Press of China, 2009. | |
24 | 台湾热管理协会. 微小型热管性能量测标准草案: TTMA-HP—2015 [S]. 台湾: 台湾热管理协会标委会, 2015. |
Taiwan Thermal Management Association. Standard testing method for the performance of miniature heat pipes: TTMA-HP—2015 [S]. Taiwan: Taiwan Thermal Management Association Standard Committee, 2015. | |
25 | Lv L, Li J. Managing high heat flux up to 500 W/cm2 through an ultra-thin flat heat pipe with superhydrophilic wick[J]. Applied Thermal Engineering, 2017, 122: 593-600. |
26 | Xu P, Li Q. Visualization study on the enhancement of heat transfer for the groove flat-plate heat pipe with nanoflower coated CuO layer[J]. Applied Physics Letters, 2017, 111(14): 141609. |
27 | Chen G, Tang Y, Wan Z, et al. Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics[J]. International Communications in Heat and Mass Transfer, 2019, 100: 12-19. |
28 | Yang K S, Tu C W, Zhang W H, et al. A novel oxidized composite braided wires wick structure applicable for ultra-thin flattened heat pipes[J]. International Communications in Heat and Mass Transfer, 2017, 88: 84-90. |
29 | Go J S. Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling[J]. Sensors and Actuators A: Physical, 2005, 121(2): 549-556. |
30 | Chen J S, Chou J H. Cooling performance of flat plate heat pipes with different liquid filling ratios[J]. International Journal of Heat & Mass Transfer, 2014, 77: 874-882. |
31 | Ji X, Xu J, Abanda A M. Copper foam based vapor chamber for high heat flux dissipation[J]. Experimental Thermal and Fluid Science, 2012, 40: 93-102. |
32 | Stubblebine M J, Catton I. Passivation and performance of inorganic aqueous solutions in a grooved aluminum flat heat pipe[J]. Journal of Heat Transfer, 2015, 137(5): 052901. |
33 | Han X, Wang Y, Liang Q. Investigation of the thermal performance of a novel flat heat pipe sink with multiple heat sources[J]. International Communications in Heat and Mass Transfer, 2018, 94: 71-76. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Limei SHEN, Boxing HU, Yufei XIE, Weihao ZENG, Xiaoyu ZHANG. Experimental study on heat transfer performance of ultra-thin flat heat pipe [J]. CIESC Journal, 2023, 74(S1): 198-205. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[8] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[12] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[13] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[14] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 280
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 283
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||