CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1724-1734.DOI: 10.11949/0438-1157.20221589
• Energy and environmental engineering • Previous Articles Next Articles
Laiming LUO1(), Jin ZHANG1, Zhibin GUO2, Haining WANG1, Shanfu LU1(), Yan XIANG1
Received:
2022-12-09
Revised:
2023-03-02
Online:
2023-06-02
Published:
2023-04-05
Contact:
Shanfu LU
罗来明1(), 张劲1, 郭志斌2, 王海宁1, 卢善富1(), 相艳1
通讯作者:
卢善富
作者简介:
罗来明(1993—),男,博士研究生,luolaiming2018@126.com
基金资助:
CLC Number:
Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range[J]. CIESC Journal, 2023, 74(4): 1724-1734.
罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734.
几何参数 | 数值 |
---|---|
单池数量 | 10~60 |
膜电极长度/mm | 176.55 |
膜电极宽度/mm | 93.65 |
膜电极面积/cm2 | 165 |
气体扩散电极厚度/μm | 430 |
质子交换膜厚度/μm | 40 |
密封圈厚度/mm | 0.9 |
石墨双极板厚度/mm | 2.5 |
金属端板厚度/mm | 20 |
Table 1 Geometry parameters of HT-PEMFCs stack model
几何参数 | 数值 |
---|---|
单池数量 | 10~60 |
膜电极长度/mm | 176.55 |
膜电极宽度/mm | 93.65 |
膜电极面积/cm2 | 165 |
气体扩散电极厚度/μm | 430 |
质子交换膜厚度/μm | 40 |
密封圈厚度/mm | 0.9 |
石墨双极板厚度/mm | 2.5 |
金属端板厚度/mm | 20 |
边界条件和物性参数 | 数值 |
---|---|
氢气摩尔分数 | 1.0 |
氧气摩尔分数 | 0.21 |
氮气摩尔分数 | 0.79 |
氢气/空气(计量比) | 1.5/2.5 |
氢空及冷却液进口温度/℃ | 150 |
氢空及冷却液出口压力/Pa | 101325 |
阳极参考交换电流密度/(A/m2) | 102 |
阴极参考交换电流密度/(A/m2) | 10-3 |
催化层比表面积/ m-1 | 3×105 |
气体扩散层孔隙率 | 0.4 |
催化层孔隙率 | 0.3 |
气体扩散层渗透率/ m2 | 1.18×10-11 |
催化层渗透率/ m2 | 2.36×10-12 |
气体扩散电极电导率/(S/m) | 222 |
质子交换膜电导率/(S/m) | 7.64 |
氢气参考浓度/(mol/m3) | 40.88 |
氧气参考浓度/(mol/m3) | 40.88 |
Table 2 Boundary conditions and physical parameters of HT-PEMFCs stack model
边界条件和物性参数 | 数值 |
---|---|
氢气摩尔分数 | 1.0 |
氧气摩尔分数 | 0.21 |
氮气摩尔分数 | 0.79 |
氢气/空气(计量比) | 1.5/2.5 |
氢空及冷却液进口温度/℃ | 150 |
氢空及冷却液出口压力/Pa | 101325 |
阳极参考交换电流密度/(A/m2) | 102 |
阴极参考交换电流密度/(A/m2) | 10-3 |
催化层比表面积/ m-1 | 3×105 |
气体扩散层孔隙率 | 0.4 |
催化层孔隙率 | 0.3 |
气体扩散层渗透率/ m2 | 1.18×10-11 |
催化层渗透率/ m2 | 2.36×10-12 |
气体扩散电极电导率/(S/m) | 222 |
质子交换膜电导率/(S/m) | 7.64 |
氢气参考浓度/(mol/m3) | 40.88 |
氧气参考浓度/(mol/m3) | 40.88 |
Fig.4 The stacks temperature distribution (a), MEA temperature distribution (b) and current density distribution on the MEA reaction interface (c) of different single cell numbers (10—60 cells from left to right)
电堆单池 数量 | 输出 电压/V | 输出 功率/W | 膜电极 最高温度/K | 膜电极 最低温度/K | 膜电极 温差/K | 氢气流道 压降/Pa | 空气流道 压降/Pa | 冷却液流道 压降/Pa | 空压机和泵的 寄生功耗/W | 净输出 功率/W |
---|---|---|---|---|---|---|---|---|---|---|
10 | 6.41 | 211.66 | 431.01 | 424.06 | 6.95 | 69.07 | 913.30 | 2918.01 | 0.47 | 211.19 |
20 | 12.82 | 423.16 | 431.91 | 423.97 | 7.94 | 69.17 | 913.40 | 4021.40 | 0.99 | 422.17 |
30 | 19.23 | 634.72 | 431.90 | 423.87 | 8.03 | 69.11 | 913.61 | 5994.63 | 1.61 | 633.11 |
40 | 25.64 | 846.15 | 431.91 | 423.80 | 8.11 | 69.18 | 915.38 | 8726.89 | 2.38 | 843.77 |
50 | 32.04 | 1057.45 | 432.64 | 423.72 | 8.92 | 69.29 | 915.84 | 12885.26 | 3.41 | 1054.04 |
60 | 38.42 | 1267.93 | 433.90 | 423.68 | 10.22 | 69.33 | 917.95 | 19512.85 | 4.92 | 1263.00 |
Table 3 Effect of different single cell numbers on the physical parameters of stacks
电堆单池 数量 | 输出 电压/V | 输出 功率/W | 膜电极 最高温度/K | 膜电极 最低温度/K | 膜电极 温差/K | 氢气流道 压降/Pa | 空气流道 压降/Pa | 冷却液流道 压降/Pa | 空压机和泵的 寄生功耗/W | 净输出 功率/W |
---|---|---|---|---|---|---|---|---|---|---|
10 | 6.41 | 211.66 | 431.01 | 424.06 | 6.95 | 69.07 | 913.30 | 2918.01 | 0.47 | 211.19 |
20 | 12.82 | 423.16 | 431.91 | 423.97 | 7.94 | 69.17 | 913.40 | 4021.40 | 0.99 | 422.17 |
30 | 19.23 | 634.72 | 431.90 | 423.87 | 8.03 | 69.11 | 913.61 | 5994.63 | 1.61 | 633.11 |
40 | 25.64 | 846.15 | 431.91 | 423.80 | 8.11 | 69.18 | 915.38 | 8726.89 | 2.38 | 843.77 |
50 | 32.04 | 1057.45 | 432.64 | 423.72 | 8.92 | 69.29 | 915.84 | 12885.26 | 3.41 | 1054.04 |
60 | 38.42 | 1267.93 | 433.90 | 423.68 | 10.22 | 69.33 | 917.95 | 19512.85 | 4.92 | 1263.00 |
Fig.5 Voltage consistency (a), MEA average temperature, maximum temperature and temperature difference consistency of stacks with different single cell numbers [(b)—(d)]
电堆单池数量 | 平均 电压/mV | 标准偏差 | 最高单池 电压/mV | 最低单池 电压/mV | 极差/mV |
---|---|---|---|---|---|
10 | 0.6414 | 5.93×10-4 | 0.6426 | 0.6408 | 1.8 |
20 | 0.6412 | 7.16×10-4 | 0.6429 | 0.6405 | 2.4 |
30 | 0.6411 | 7.75×10-4 | 0.6432 | 0.6405 | 2.7 |
40 | 0.6410 | 8.89×10-4 | 0.6434 | 0.6401 | 3.3 |
50 | 0.6409 | 1.17×10-3 | 0.6438 | 0.6396 | 4.2 |
60 | 0.6404 | 1.77×10-3 | 0.6445 | 0.6380 | 6.5 |
Table 4 Effect of different single cell numbers on the voltage consistency of stacks
电堆单池数量 | 平均 电压/mV | 标准偏差 | 最高单池 电压/mV | 最低单池 电压/mV | 极差/mV |
---|---|---|---|---|---|
10 | 0.6414 | 5.93×10-4 | 0.6426 | 0.6408 | 1.8 |
20 | 0.6412 | 7.16×10-4 | 0.6429 | 0.6405 | 2.4 |
30 | 0.6411 | 7.75×10-4 | 0.6432 | 0.6405 | 2.7 |
40 | 0.6410 | 8.89×10-4 | 0.6434 | 0.6401 | 3.3 |
50 | 0.6409 | 1.17×10-3 | 0.6438 | 0.6396 | 4.2 |
60 | 0.6404 | 1.77×10-3 | 0.6445 | 0.6380 | 6.5 |
Fig.7 Experimental and simulation voltage consistency curves for 30 (a) and 60 (b) cells stacks, and experimental voltage consistency curve of 120 cells stack (c)
电堆单池 数量 | 平均 电压/mV | 标准 偏差 | 最高单池 电压/mV | 最低单池 电压/mV | 极差/mV |
---|---|---|---|---|---|
30 | |||||
实验 | 0.6566 | 6.51×10-3 | 0.6700 | 0.6460 | 24 |
模拟 | 0.6411 | 7.75×10-4 | 0.6432 | 0.6405 | 2.7 |
60 | |||||
实验 | 0.6548 | 5.48×10-3 | 0.6790 | 0.6520 | 27 |
模拟 | 0.6404 | 1.77×10-3 | 0.6445 | 0.6380 | 6.5 |
120 | |||||
实验 | 0.6552 | 1.62×10-2 | 0.6590 | 0.6000 | 59 |
Table 5 Voltage consistency parameters of 30 and 60 cells stacks (experiment and simulation), and 120 cells stack (experiment)
电堆单池 数量 | 平均 电压/mV | 标准 偏差 | 最高单池 电压/mV | 最低单池 电压/mV | 极差/mV |
---|---|---|---|---|---|
30 | |||||
实验 | 0.6566 | 6.51×10-3 | 0.6700 | 0.6460 | 24 |
模拟 | 0.6411 | 7.75×10-4 | 0.6432 | 0.6405 | 2.7 |
60 | |||||
实验 | 0.6548 | 5.48×10-3 | 0.6790 | 0.6520 | 27 |
模拟 | 0.6404 | 1.77×10-3 | 0.6445 | 0.6380 | 6.5 |
120 | |||||
实验 | 0.6552 | 1.62×10-2 | 0.6590 | 0.6000 | 59 |
1 | Asensio F J, San Martín J I, Zamora I, et al. Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies[J]. Applied Energy, 2018, 211: 413-430. |
2 | Amirfazli A, Asghari S, Koosha M. Mathematical modeling and simulation of thermal management in polymer electrolyte membrane fuel cell stacks[J]. Journal of Power Sources, 2014, 268: 533-545. |
3 | 李友才, 许思传, 杨宗田, 等. 燃料电池电堆冷却液加热的实验研究[J]. 电源技术, 2015, 39(7): 1408-1410. |
Li Y C, Xu S C, Yang Z T, et al. Experiment study of coolant heated on automobile PEMFC[J]. Chinese Journal of Power Sources, 2015, 39(7): 1408-1410. | |
4 | 张巨佳, 张劲, 王海宁, 等. 高温聚合物电解质膜燃料电池膜电极中磷酸分布及调控策略研究进展[J]. 物理化学学报, 2021, 37(9): 172-186. |
Zhang J J, Zhang J, Wang H N, et al. Advancement in distribution and control strategy of phosphoric acid in membrane electrode assembly of high-temperature polymer electrolyte membrane fuel cells[J]. Acta Physico-Chimica Sinica, 2021, 37(9): 172-186. | |
5 | Zhang J J, Wang H N, Li W, et al. Effect of catalyst layer microstructures on performance and stability for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2021, 505: 230059. |
6 | Zhang J J, Bai H J, Yan W R, et al. Enhancing cell performance and durability of high temperature polymer electrolyte membrane fuel cells by inhibiting the formation of cracks in catalyst layers[J]. Journal of the Electrochemical Society, 2020, 167(11): 114501. |
7 | Janßen H, Supra J, Lüke L, et al. Development of HT-PEFC stacks in the kW range[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4705-4713. |
8 | 张浩, 杨代军, 李冰, 等. 国产质子交换膜燃料电池电堆研究[J]. 太阳能学报, 2012, 33(7): 1248-1252. |
Zhang H, Yang D J, Li B, et al. Investigation of a home-made PEMFC stack[J]. Acta Energiae Solaris Sinica, 2012, 33(7): 1248-1252. | |
9 | Huang F X, Qiu D K, Lan S H, et al. Performance evaluation of commercial-size proton exchange membrane fuel cell stacks considering air flow distribution in the manifold[J]. Energy Conversion and Management, 2020, 203: 112256. |
10 | Devrim Y, Devrim H, Eroglu I. Development of 500W PEM fuel cell stack for portable power generators[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7707-7719. |
11 | López-Sabirón A M, Barroso J, Roda V, et al. Design and development of the cooling system of a 2 kW nominal power open-cathode polymer electrolyte fuel cell stack[J]. International Journal of Hydrogen Energy, 2012, 37(8): 7289-7298. |
12 | 倪蕾蕾. 5kW级质子交换膜燃料电池电堆的制备及实验研究[J]. 新型工业化, 2021, 11(2): 229-231. |
Ni L L. Preparation and experimental study of 5kW proton exchange membrane fuel cell stack[J]. The Journal of New Industrialization, 2021, 11(2): 229-231. | |
13 | 陈振兴, 郭树杰, 胡科峰, 等. 燃料电池双极板流场及电堆结构研究现状[J]. 电池工业, 2020, 24(5): 264-268, 280. |
Chen Z X, Guo S J, Hu K F, et al. Research progress of bipolar plate flow field and stack structure for full cell[J]. Chinese Battery Industry, 2020, 24(5): 264-268, 280. | |
14 | 胡翀, 赵袁, RAZA Ali, 等. 基于单层电堆形式的质子交换膜燃料电池仿真模拟研究及优化[J]. 综合智慧能源, 2022, 44(8): 91-96. |
Hu C, Zhao Y, Ali R, et al. Simulation and optimization for the PEMFC based on single-cell stack structure[J]. Integrated Intelligent Energy, 2022, 44(8): 91-96. | |
15 | Zhang G B, Xie X, Xie B, et al. Large-scale multi-phase simulation of proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2019, 130: 555-563. |
16 | Kvesić M, Reimer U, Froning D, et al. 3D modeling of a 200 cm2 HT-PEFC short stack[J]. International Journal of Hydrogen Energy, 2012, 37(3): 2430-2439. |
17 | 郑文杰, 杨径, 朱林培, 等. 车用燃料电池热管理性能仿真与试验研究[J]. 汽车工程, 2021, 43(3): 381-386. |
Zheng W J, Yang J, Zhu L P, et al. Simulation and experimental study on thermal management system of vehicle fuel cell[J]. Automotive Engineering, 2021, 43(3): 381-386. | |
18 | Pei H C, Liu Z C, Zhang H N, et al. In situ measurement of temperature distribution in proton exchange membrane fuel cell (Ⅰ): A hydrogen-air stack[J]. Journal of Power Sources, 2013, 227: 72-79. |
19 | Chen C Y, Huang K P, Yan W M, et al. Development and performance diagnosis of a high power air-cooled PEMFC stack[J]. International Journal of Hydrogen Energy, 2016, 41(27): 11784-11793. |
20 | Wang Y, Sauer D U, Koehne S, et al. Dynamic modeling of high temperature PEM fuel cell start-up process[J]. International Journal of Hydrogen Energy, 2014, 39(33): 19067-19078. |
21 | Andreasen S J, Kær S K. Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks[J]. International Journal of Hydrogen Energy, 2008, 33(17): 4655-4664. |
22 | Matian M, Marquis A J, Brandon N P. Application of thermal imaging to validate a heat transfer model for polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12308-12316. |
23 | Shimpalee S, Ohashi M, van Zee J W, et al. Experimental and numerical studies of portable PEMFC stack[J]. Electrochimica Acta, 2009, 54(10): 2899-2911. |
24 | Miller M, Bazylak A. A review of polymer electrolyte membrane fuel cell stack testing[J]. Journal of Power Sources, 2011, 196(2): 601-613. |
25 | Scholta J, Messerschmidt M, Jörissen L, et al. Externally cooled high temperature polymer electrolyte membrane fuel cell stack[J]. Journal of Power Sources, 2009, 190(1): 83-85. |
26 | 罗来明, 陈思安, 王海宁, 等. 高温聚合物电解质膜燃料电池大尺寸(200 cm2)多蛇形流场模拟与优化[J]. 化工进展, 2021, 40(9): 4975-4985. |
Luo L M, Chen S A, Wang H N, et al. Simulation and optimization of large-scale(200 cm2) multiple-serpentine flow field for high temperature polymer electrolyte membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4975-4985. | |
27 | 卢善富, 徐鑫, 张劲, 等. 燃料电池用磷酸掺杂高温质子交换膜研究进展[J]. 中国科学: 化学, 2017, 47(5): 565-572. |
Lu S F, Xu X, Zhang J, et al. Progress of phosphoric acid doped high temperature proton exchange membrane for fuel cells[J]. Scientia Sinica: Chimica, 2017, 47(5): 565-572. | |
28 | 张劲, 郭志斌, 张巨佳, 等. 聚醚砜-聚乙烯吡咯烷酮高温聚合物电解质膜及燃料电池堆性能研究[J]. 化工学报, 2021, 72(1): 589-596. |
Zhang J, Guo Z B, Zhang J J, et al. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack[J]. CIESC Journal, 2021, 72(1): 589-596. | |
29 | Li W, Wang H N, Zhang J, et al. Advancements of polyvinylpyrrolidone-based polymer electrolyte membranes for electrochemical energy conversion and storage devices[J]. ChemSusChem, 2022, 15(10): e202200071. |
30 | Tsukamoto T, Aoki T, Kanesaka H, et al. Three-dimensional numerical simulation of full-scale proton exchange membrane fuel cells at high current densities[J]. Journal of Power Sources, 2021, 488: 229412. |
31 | Su G Q, Yang D J, Xiao Q F, et al. Effects of vortexes in feed header on air flow distribution of PEMFC stack: CFD simulation and optimization for better uniformity[J]. Renewable Energy, 2021, 173: 498-506. |
32 | Harikishan Reddy E, Jayanti S. Thermal management strategies for a 1 kWe stack of a high temperature proton exchange membrane fuel cell[J]. Applied Thermal Engineering, 2012, 48: 465-475. |
33 | 胡祎玮, 夏玉珍, 陆佳宙, 等. 基于计算流体力学的大型质子交换膜燃料电池电堆歧管尺寸优化分析[J]. 汽车技术, 2022(6): 20-26. |
Hu Y W, Xia Y Z, Lu J Z, et al. Optimization analysis of manifold dimension of large PEMFC stack based on CFD[J]. Automobile Technology, 2022(6): 20-26. | |
34 | 石磊, 许思传, 刘泽. 基于人工神经网络的3 kW质子交换膜燃料电池电堆一致性优化[J]. 太阳能学报, 2022, 43(8): 498-503. |
Shi L, Xu S C, Liu Z. Consistency optimization of 3 kW proton exchange membrane fuel cell stack based on artificial neural network[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 498-503. | |
35 | 翁元明, 林瑞, 唐文超, 等. 燃料电池堆单片电压一致性研究进展[J]. 电源技术, 2015, 39(1): 199-202. |
Weng Y M, Lin R, Tang W C, et al. Development of individual cell voltage uniformity of fuel cell stack[J]. Chinese Journal of Power Sources, 2015, 39(1): 199-202. | |
36 | 戴朝华, 史青, 陈维荣, 等. 质子交换膜燃料电池单体电压均衡性研究综述[J]. 中国电机工程学报, 2016, 36(5): 1289-1302. |
Dai C H, Shi Q, Chen W R, et al. A review of the single cell voltage uniformity in proton exchange membrane fuel cells[J]. Proceedings of the CSEE, 2016, 36(5): 1289-1302. | |
37 | Amirfazli A, Asghari S, Sarraf M. An investigation into the effect of manifold geometry on uniformity of temperature distribution in a PEMFC stack[J]. Energy, 2018, 145: 141-151. |
38 | Salva J A, Iranzo A, Rosa F, et al. Experimental validation of the polarization curve and the temperature distribution in a PEMFC stack using a one dimensional analytical model[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20615-20632. |
39 | Pei H C, Shen J, Cai Y H, et al. Operation characteristics of air-cooled proton exchange membrane fuel cell stacks under ambient pressure[J]. Applied Thermal Engineering, 2014, 63(1): 227-233. |
40 | Barreras F, Lozano A, Barroso J, et al. Theoretical model for the optimal design of air cooling systems of polymer electrolyte fuel cells. application to a high-temperature PEMFC[J]. Fuel Cells, 2013, 13(2): 227-237. |
41 | Le Ny M, Chadebec O, Cauffet G, et al. A three dimensional electrical model of PEMFC stack[J]. Fuel Cells, 2012, 12(2): 225-238. |
42 | Li W, Liu W, Zhang J, et al. Porous proton exchange membrane with high stability and low hydrogen permeability realized by dense double skin layers constructed with amino tris (methylene phosphonic acid)[J]. Advanced Functional Materials, 2023, 33: 2210036. |
[1] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[2] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[3] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[4] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[5] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[6] | Qian LIU, Xianglan ZHANG, Zhiping LI, Yulong LI, Mengxing HAN. Screening of deep eutectic solvents and study on extraction performance for oil-hydroxybenzene separation [J]. CIESC Journal, 2022, 73(9): 3915-3928. |
[7] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[8] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[9] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[10] | Luyue HUANG, Chang LIU, Yongyi XU, Haoruo XING, Feng WANG, Shuangchen MA. Development of CDI two-dimensional concentration mass transfer model and experimental validation [J]. CIESC Journal, 2022, 73(7): 2933-2943. |
[11] | Yifang DONG, Yingying YU, Xuegong HU, Gang PEI. Electric field effect on wetting and capillary flow characteristics in vertical microgrooves [J]. CIESC Journal, 2022, 73(7): 2952-2961. |
[12] | Wenhuai LI, Wei ZHOU. Analysis of influencing factors and design strategies of high oxygen ion conductivity perovskite [J]. CIESC Journal, 2022, 73(4): 1455-1471. |
[13] | Jianwei ZHANG, Fengyuan AN, Xin DONG, Ying FENG. Analysis of dynamic characteristics of flow field in impinging stream reactor based on step jet [J]. CIESC Journal, 2022, 73(2): 622-633. |
[14] | Ziyi CHI, Chengwei LIU, Yuling ZHANG, Xuegang LI, Wende XIAO. Reactor simulation and optimization for CO oxidative coupling to dimethyl oxalate reactions [J]. CIESC Journal, 2022, 73(11): 4974-4986. |
[15] | Ming PENG, Qiangfeng XIA, Lixiang JIANG, Ruiyuan ZHANG, Lingyi GUO, Li CHEN, Wenquan TAO. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells [J]. CIESC Journal, 2022, 73(10): 4625-4637. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 358
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 286
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||