CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 439-449.DOI: 10.11949/0438-1157.20231295
• Thermodynamics • Previous Articles Next Articles
Rui SUN1(), Hua TIAN1(), Zirui WU2, Xiaocun SUN2, Gequn SHU1,2
Received:
2023-12-04
Revised:
2024-01-09
Online:
2024-04-10
Published:
2024-02-25
Contact:
Hua TIAN
孙瑞1(), 田华1(), 吴子睿2, 孙孝存2, 舒歌群1,2
通讯作者:
田华
作者简介:
孙瑞(1996—),男,博士研究生,ruisun@tju.edu.cn
基金资助:
CLC Number:
Rui SUN, Hua TIAN, Zirui WU, Xiaocun SUN, Gequn SHU. Study on the critical properties calculation models of CO2-based binary mixture working fluid[J]. CIESC Journal, 2024, 75(2): 439-449.
孙瑞, 田华, 吴子睿, 孙孝存, 舒歌群. 二氧化碳混合工质临界参数计算模型对比研究[J]. 化工学报, 2024, 75(2): 439-449.
Add to citation manager EndNote|Ris|BibTeX
混合工质 | CO2摩尔分数 | 点数 | 文献 |
---|---|---|---|
CO2+HFC-32 | 0.18~0.84 | 25 | [ |
0~1 | [ | ||
0~1 | [ | ||
CO2+HFC-134a | 0~1 | 10 | [ |
CO2+HFC-152a① | 0~1 | 11 | [ |
CO2+HFO-1234yf | 0~1 | 11 | [ |
0~1 | 9 | [ | |
CO2+HFO-1234ze(E) | 0~1 | 11 | [ |
0~1 | 9 | [ | |
CO2+HFO-1243zf | 0~1 | 11 | [ |
CO2+丙烷 | 0.152~0.939 | 38 | [ |
0.407~0.795 | [ | ||
0.13~0.92 | [ | ||
0.9015~1 | [ | ||
0.1394~0.78 | [ | ||
0~1 | [ | ||
CO2+正丁烷 | 0.139~0.861 | 40 | [ |
0.188~0.831 | [ | ||
0.914~1 | [ | ||
0.51~0.875 | [ | ||
0.088~0.839 | [ | ||
0~1 | [ | ||
CO2+异丁烷 | 0~1 | 8 | [ |
Table 1 Experimental data on critical point of CO2 mixtures
混合工质 | CO2摩尔分数 | 点数 | 文献 |
---|---|---|---|
CO2+HFC-32 | 0.18~0.84 | 25 | [ |
0~1 | [ | ||
0~1 | [ | ||
CO2+HFC-134a | 0~1 | 10 | [ |
CO2+HFC-152a① | 0~1 | 11 | [ |
CO2+HFO-1234yf | 0~1 | 11 | [ |
0~1 | 9 | [ | |
CO2+HFO-1234ze(E) | 0~1 | 11 | [ |
0~1 | 9 | [ | |
CO2+HFO-1243zf | 0~1 | 11 | [ |
CO2+丙烷 | 0.152~0.939 | 38 | [ |
0.407~0.795 | [ | ||
0.13~0.92 | [ | ||
0.9015~1 | [ | ||
0.1394~0.78 | [ | ||
0~1 | [ | ||
CO2+正丁烷 | 0.139~0.861 | 40 | [ |
0.188~0.831 | [ | ||
0.914~1 | [ | ||
0.51~0.875 | [ | ||
0.088~0.839 | [ | ||
0~1 | [ | ||
CO2+异丁烷 | 0~1 | 8 | [ |
工质 | 名称 | Tc/K | pc/MPa | Vc/(cm3·mol-1) | ω |
---|---|---|---|---|---|
CO2 | 二氧化碳 | 304.13 | 7.377 | 94.118 | 0.224 |
HFC-32 | 二氟甲烷 | 351.26 | 5.782 | 122.698 | 0.277 |
HFC-134a | 1,1,1,2-四氟乙烷 | 374.21 | 4.059 | 199.320 | 0.327 |
HFC-152a | 1,1-二氟乙烷 | 386.41 | 4.517 | 179.486 | 0.275 |
HFO-1234yf | 2,3,3,3-四氟丙烯 | 367.85 | 3.382 | 239.808 | 0.276 |
HFO-1234ze(E) | 反式-1,3,3,3-四氟丙烯 | 382.51 | 3.635 | 233.100 | 0.313 |
HFO-1243zf | 3,3,3-三氟丙烯 | 376.93 | 3.518 | 232.558 | 0.260 |
丙烷 | 丙烷 | 369.89 | 4.251 | 200.000 | 0.152 |
丁烷 | 正丁烷 | 425.13 | 3.796 | 254.922 | 0.201 |
异丁烷 | 2-甲基丙烷 | 407.81 | 3.629 | 257.748 | 0.184 |
Table 2 Fundamental properties of pure substances[38]
工质 | 名称 | Tc/K | pc/MPa | Vc/(cm3·mol-1) | ω |
---|---|---|---|---|---|
CO2 | 二氧化碳 | 304.13 | 7.377 | 94.118 | 0.224 |
HFC-32 | 二氟甲烷 | 351.26 | 5.782 | 122.698 | 0.277 |
HFC-134a | 1,1,1,2-四氟乙烷 | 374.21 | 4.059 | 199.320 | 0.327 |
HFC-152a | 1,1-二氟乙烷 | 386.41 | 4.517 | 179.486 | 0.275 |
HFO-1234yf | 2,3,3,3-四氟丙烯 | 367.85 | 3.382 | 239.808 | 0.276 |
HFO-1234ze(E) | 反式-1,3,3,3-四氟丙烯 | 382.51 | 3.635 | 233.100 | 0.313 |
HFO-1243zf | 3,3,3-三氟丙烯 | 376.93 | 3.518 | 232.558 | 0.260 |
丙烷 | 丙烷 | 369.89 | 4.251 | 200.000 | 0.152 |
丁烷 | 正丁烷 | 425.13 | 3.796 | 254.922 | 0.201 |
异丁烷 | 2-甲基丙烷 | 407.81 | 3.629 | 257.748 | 0.184 |
混合工质 | kij |
---|---|
CO2+HFC-32 | -0.015 |
CO2+HFC-134a | 0.017 |
CO2+HFC-152a | 0.015 |
CO2+HFO-1234yf | 0.022 |
CO2+HFO-1234ze(E) | 0.035 |
CO2+HFO-1243zf | 0.020 |
CO2+丙烷 | 0.100 |
CO2+正丁烷 | 0.150 |
CO2+异丁烷 | 0.125 |
Table 3 Binary interaction parameters of Chueh-Prausnitz (CP) method
混合工质 | kij |
---|---|
CO2+HFC-32 | -0.015 |
CO2+HFC-134a | 0.017 |
CO2+HFC-152a | 0.015 |
CO2+HFO-1234yf | 0.022 |
CO2+HFO-1234ze(E) | 0.035 |
CO2+HFO-1243zf | 0.020 |
CO2+丙烷 | 0.100 |
CO2+正丁烷 | 0.150 |
CO2+异丁烷 | 0.125 |
混合工质 | 参数 | i | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
CO2+HFC-32 | ci | 19.992 | 11.564 | -86.780 | 234.360 | -284.363 | 131.804 |
di | 0.050 | -0.213 | 0.302 | 0.316 | -1.109 | 0.720 | |
CO2+HFC-134a | ci | 49.094 | 53.934 | -250.929 | 683.153 | -834.737 | 391.168 |
di | 0.209 | -1.360 | 4.016 | -5.897 | 3.931 | -0.837 | |
CO2+HFC-152a | ci | 48.274 | 93.808 | -346.395 | 813.068 | -960.045 | 440.489 |
di | 0.135 | -0.577 | 0.746 | 0.496 | -2.034 | 1.298 | |
CO2+HFO-1234yf | ci | 100.092 | -60.854 | 147.436 | 134.445 | -586.749 | 390.412 |
di | 0.243 | -1.573 | 5.216 | -9.177 | 7.703 | -2.393 | |
CO2+HFO-1234ze(E) | ci | 77.751 | -15.252 | -39.746 | 517.360 | -868.373 | 475.568 |
di | 0.277 | -2.319 | 8.529 | -15.494 | 13.353 | -4.340 | |
CO2+HFO-1243zf | ci | 98.126 | 64.441 | -299.780 | 906.444 | -1253.048 | 614.351 |
di | -8.936 | 19.701 | -28.049 | -49.576 | 146.804 | -91.540 | |
CO2+丙烷 | ci | 48.580 | -169.524 | 533.658 | -1211.609 | 1045.265 | -320.067 |
di | 0.135 | -1.066 | 3.737 | -7.371 | 7.463 | -2.816 | |
CO2+丁烷 | ci | 69.746 | -182.626 | 1168.023 | -2414.712 | 1902.741 | -543.175 |
di | 0.236 | -1.530 | 5.760 | -11.550 | 10.599 | -3.417 | |
CO2+异丁烷 | ci | 96.779 | -258.365 | 1051.786 | -1945.810 | 1443.448 | -386.902 |
di | 0.278 | -2.431 | 9.252 | -17.703 | 15.902 | -5.222 |
Table 4 Coefficients of REFPROP on critical property calculation
混合工质 | 参数 | i | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
CO2+HFC-32 | ci | 19.992 | 11.564 | -86.780 | 234.360 | -284.363 | 131.804 |
di | 0.050 | -0.213 | 0.302 | 0.316 | -1.109 | 0.720 | |
CO2+HFC-134a | ci | 49.094 | 53.934 | -250.929 | 683.153 | -834.737 | 391.168 |
di | 0.209 | -1.360 | 4.016 | -5.897 | 3.931 | -0.837 | |
CO2+HFC-152a | ci | 48.274 | 93.808 | -346.395 | 813.068 | -960.045 | 440.489 |
di | 0.135 | -0.577 | 0.746 | 0.496 | -2.034 | 1.298 | |
CO2+HFO-1234yf | ci | 100.092 | -60.854 | 147.436 | 134.445 | -586.749 | 390.412 |
di | 0.243 | -1.573 | 5.216 | -9.177 | 7.703 | -2.393 | |
CO2+HFO-1234ze(E) | ci | 77.751 | -15.252 | -39.746 | 517.360 | -868.373 | 475.568 |
di | 0.277 | -2.319 | 8.529 | -15.494 | 13.353 | -4.340 | |
CO2+HFO-1243zf | ci | 98.126 | 64.441 | -299.780 | 906.444 | -1253.048 | 614.351 |
di | -8.936 | 19.701 | -28.049 | -49.576 | 146.804 | -91.540 | |
CO2+丙烷 | ci | 48.580 | -169.524 | 533.658 | -1211.609 | 1045.265 | -320.067 |
di | 0.135 | -1.066 | 3.737 | -7.371 | 7.463 | -2.816 | |
CO2+丁烷 | ci | 69.746 | -182.626 | 1168.023 | -2414.712 | 1902.741 | -543.175 |
di | 0.236 | -1.530 | 5.760 | -11.550 | 10.599 | -3.417 | |
CO2+异丁烷 | ci | 96.779 | -258.365 | 1051.786 | -1945.810 | 1443.448 | -386.902 |
di | 0.278 | -2.431 | 9.252 | -17.703 | 15.902 | -5.222 |
二元系 | 混合工质 | AAD(Tc)/% | |||
---|---|---|---|---|---|
Li | CP | RK | REFPROP 10.0 | ||
CO2+HFC/HFO | CO2+HFC-32 | 0.15 | 0.15 | 0.08 | 0.40 |
CO2+HFC-134a | 1.14 | 0.81 | 0.13 | 1.45 | |
CO2+HFC-152a | 0.09 | 0.19 | 0.06 | 0.57 | |
CO2+HFO-1234yf | 0.69 | 0.23 | 0.13 | 2.28 | |
CO2+HFO-1234ze(E) | 0.47 | 0.14 | 0.14 | 1.29 | |
CO2+HFO-1243zf | 0.76 | 0.44 | 0.19 | 2.63 | |
平均值 | 0.55 | 0.33 | 0.12 | 1.44 | |
CO2+HC | CO2+丙烷 | 2.76 | 0.67 | 0.24 | 0.43 |
CO2+正丁烷 | 3.46 | 0.84 | 0.28 | 0.64 | |
CO2+异丁烷 | 2.82 | 0.98 | 0.34 | 0.73 | |
平均值 | 3.01 | 0.83 | 0.29 | 0.60 |
Table 5 Average absolute deviation of critical temperature AAD(Tc) by each model
二元系 | 混合工质 | AAD(Tc)/% | |||
---|---|---|---|---|---|
Li | CP | RK | REFPROP 10.0 | ||
CO2+HFC/HFO | CO2+HFC-32 | 0.15 | 0.15 | 0.08 | 0.40 |
CO2+HFC-134a | 1.14 | 0.81 | 0.13 | 1.45 | |
CO2+HFC-152a | 0.09 | 0.19 | 0.06 | 0.57 | |
CO2+HFO-1234yf | 0.69 | 0.23 | 0.13 | 2.28 | |
CO2+HFO-1234ze(E) | 0.47 | 0.14 | 0.14 | 1.29 | |
CO2+HFO-1243zf | 0.76 | 0.44 | 0.19 | 2.63 | |
平均值 | 0.55 | 0.33 | 0.12 | 1.44 | |
CO2+HC | CO2+丙烷 | 2.76 | 0.67 | 0.24 | 0.43 |
CO2+正丁烷 | 3.46 | 0.84 | 0.28 | 0.64 | |
CO2+异丁烷 | 2.82 | 0.98 | 0.34 | 0.73 | |
平均值 | 3.01 | 0.83 | 0.29 | 0.60 |
二元系 | 混合工质 | AAD(pc)/% | |||||
---|---|---|---|---|---|---|---|
CP | CP (kij =0) | RK | Li+KK | CP+KK | REFPROP 10.0 | ||
CO2+HFC/HFO | CO2+HFC-32 | 0.56 | 3.16 | 0.47 | 2.64 | 2.30 | 0.57 |
CO2+HFC-134a | 1.38 | 2.79 | 0.57 | 8.57 | 6.41 | 5.22 | |
CO2+HFC-152a | 0.69 | 2.07 | 0.25 | 3.47 | 1.81 | 3.19 | |
CO2+HFO-1234yf | 0.91 | 4.14 | 0.24 | 14.02 | 10.77 | 13.11 | |
CO2+HFO-1234ze(E) | 0.67 | 6.46 | 0.62 | 13.91 | 10.34 | 7.56 | |
CO2+HFO-1243zf | 1.29 | 3.99 | 0.74 | 12.22 | 9.09 | 13.12 | |
平均值 | 0.92 | 3.77 | 0.48 | 9.14 | 6.79 | 7.13 | |
CO2+HC | CO2+丙烷 | 4.75 | 15.83 | 1.79 | 9.16 | 6.20 | 2.39 |
CO2+正丁烷 | 5.89 | 24.94 | 1.46 | 14.75 | 5.38 | 1.64 | |
CO2+异丁烷 | 4.68 | 24.91 | 0.14 | 15.43 | 5.30 | 4.98 | |
平均值 | 5.10 | 21.89 | 1.13 | 13.11 | 5.63 | 3.00 |
Table 6 Average absolute deviation of critical pressure AAD(pc) by each model
二元系 | 混合工质 | AAD(pc)/% | |||||
---|---|---|---|---|---|---|---|
CP | CP (kij =0) | RK | Li+KK | CP+KK | REFPROP 10.0 | ||
CO2+HFC/HFO | CO2+HFC-32 | 0.56 | 3.16 | 0.47 | 2.64 | 2.30 | 0.57 |
CO2+HFC-134a | 1.38 | 2.79 | 0.57 | 8.57 | 6.41 | 5.22 | |
CO2+HFC-152a | 0.69 | 2.07 | 0.25 | 3.47 | 1.81 | 3.19 | |
CO2+HFO-1234yf | 0.91 | 4.14 | 0.24 | 14.02 | 10.77 | 13.11 | |
CO2+HFO-1234ze(E) | 0.67 | 6.46 | 0.62 | 13.91 | 10.34 | 7.56 | |
CO2+HFO-1243zf | 1.29 | 3.99 | 0.74 | 12.22 | 9.09 | 13.12 | |
平均值 | 0.92 | 3.77 | 0.48 | 9.14 | 6.79 | 7.13 | |
CO2+HC | CO2+丙烷 | 4.75 | 15.83 | 1.79 | 9.16 | 6.20 | 2.39 |
CO2+正丁烷 | 5.89 | 24.94 | 1.46 | 14.75 | 5.38 | 1.64 | |
CO2+异丁烷 | 4.68 | 24.91 | 0.14 | 15.43 | 5.30 | 4.98 | |
平均值 | 5.10 | 21.89 | 1.13 | 13.11 | 5.63 | 3.00 |
11 | Peng D Y, Robinson D B. A rigorous method for predicting the critical properties of multicomponent systems from an equation of state[J]. AIChE Journal, 1977, 23(2): 137-144. |
12 | 陈振华, 曹堃, 姚臻, 等. 基于PR状态方程的二元体系临界性质计算中不同混合规则对比[J]. 高校化学工程学报, 2008, 22(3): 365-370. |
Chen Z H, Cao K, Yao Z, et al. Comparison of different mixing rules in the calculation of critical properties for binary mixtures based on PR equation of state[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(3): 365-370. | |
13 | Castier M, Sandler S I. Critical points with the Wong-Sandler mixing rule(Ⅱ): Calculations with a modified Peng-Robinson equation of state[J]. Chemical Engineering Science, 1997, 52(20): 3579-3588. |
14 | 张楠, 陈龙祥, 胡芃. 混合工质临界性质的推算研究[J]. 化工学报, 2019, 70(S2): 1-7. |
Zhang N, Chen L X, Hu P. Theoretical study on critical properties of 4 kinds of binary systems[J]. CIESC Journal, 2019, 70(S2): 1-7. | |
15 | Li C C. Critical temperature estimation for simple mixtures[J]. The Canadian Journal of Chemical Engineering, 1971, 49(5): 709-710. |
16 | Kreglewski A, Kay W B. Critical constants of conformed mixtures[J]. The Journal of Physical Chemistry, 1969, 73(10): 3359-3366. |
17 | Chueh P L, Prausnitz J M. Vapor-liquid equilibria at high pressures: calculation of critical temperatures, volumes, and pressures of nonpolar mixtures[J]. AIChE Journal, 1967, 13(6): 1107-1113. |
18 | Redlich O, Kister A T. Algebraic representation of thermodynamic properties and the classification of solutions[J]. Industrial & Engineering Chemistry, 1948, 40(2): 345-348. |
19 | Kordikowski A, Robertson D G, Poliakoff M, et al. Acoustic determination of the critical surfaces in the ternary systems CO2 + CH2F2 + CF3CH2F and CO + C2H4 + CH3CHCH2 and in their binary subsystems[J]. The Journal of Physical Chemistry B, 1997, 101(30): 5853-5862. |
20 | Diefenbacher A, Türk M. (Vapour + liquid) equilibria of binary mixtures of CO2, CH2F2, CHF3, and SF6 [J]. The Journal of Chemical Thermodynamics, 2002, 34(9): 1361-1375. |
21 | Rivollet F, Chapoy A, Coquelet C, et al. Vapor-liquid equilibrium data for the carbon dioxide (CO2) + difluoromethane (R32) system at temperatures from 283.12 to 343.25 K and pressures up to 7.46 MPa[J]. Fluid Phase Equilibria, 2004, 218(1): 95-101. |
22 | Kordikowski A, Robertson D G, Aguiar-Ricardo A I, et al. Probing vapor/liquid equilibria of near-critical binary gas mixtures by acoustic measurements[J]. The Journal of Physical Chemistry, 1996, 100(22): 9522-9526. |
23 | Madani H, Valtz A, Coquelet C, et al. (Vapor + liquid) equilibrium data for (carbon dioxide + 1, 1-difluoroethane) system at temperatures from (258 to 343) K and pressures up to about 8 MPa[J]. The Journal of Chemical Thermodynamics, 2008, 40(10): 1490-1494. |
24 | Juntarachat N, Valtz A, Coquelet C, et al. Experimental measurements and correlation of vapor–liquid equilibrium and critical data for the CO2 + R1234yf and CO2 + R1234ze(E) binary mixtures[J]. International Journal of Refrigeration, 2014, 47: 141-152. |
25 | Yao X Y, Shen J, Kang H F, et al. Measurement of critical parameters for the binary mixture of R744 (carbon dioxide) + R1234yf (2, 3, 3, 3-tetrafluoropro-1-ene)[J]. The Journal of Chemical Thermodynamics, 2023, 178: 106978. |
26 | Yao X Y, Shen J, Kang H F, et al. Measurement of critical properties for the binary mixture of R744 (carbon dioxide) + R1234ze(E) (trans-1, 3, 3, 3-tetrafluoropropene)[J]. International Journal of Refrigeration, 2023, 152: 369-375. |
27 | Yao X Y, Dong X Q, Zhao Y X, et al. Measurement of critical parameters for the binary mixture of R744 (carbon dioxide) + R1243zf (3, 3, 3-trifluoropropene)[J]. Journal of Chemical & Engineering Data, 2022, 67(9): 2128-2135. |
28 | Poettmann F H, Katz D L. Phase behavior of binary carbon dioxide-paraffin systems[J]. Industrial & Engineering Chemistry, 1945, 37(9): 847-853. |
29 | Reamer H H, Sage B H, Lacey W N. Phase equilibria in hydrocarbon systems. volumetric and phase behavior of the propane-carbon dioxide system[J]. Industrial & Engineering Chemistry, 1951, 43(11): 2515-2520. |
30 | Roof J G, Baron J D. Critical loci of binary mixtures of propane with methane, carbon dioxide, and nitrogen[J]. Journal of Chemical & Engineering Data, 1967, 12(3): 292-293. |
31 | Morrison G, Kincaid J M. Critical point measurements on nearly polydisperse fluids[J]. AIChE Journal, 1984, 30(2): 257-262. |
32 | Niesen V G, Rainwater J C. Critical locus, (vapor + liquid) equilibria, and coexisting densities of (carbon dioxide + propane) at temperatures from 311 K to 361 K[J]. The Journal of Chemical Thermodynamics, 1990, 22(8): 777-795. |
1 | Xu J L, Liu C, Sun E H, et al. Perspective of S-CO2 power cycles[J]. Energy, 2019, 186: 115831. |
2 | Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. |
3 | Yu A F, Su W, Lin X X, et al. Recent trends of supercritical CO2 Brayton cycle: bibliometric analysis and research review[J]. Nuclear Engineering and Technology, 2021, 53(3): 699-714. |
4 | White M T, Bianchi G, Chai L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447. |
5 | 杨富方, 刘航滔, 杨震, 等. 超临界二氧化碳循环工质热物性研究进展[J]. 热力发电, 2020, 49(10): 21-29. |
Yang F F, Liu H T, Yang Z, et al. Thermophysical properties of working fluid of supercritical carbon dioxide cycle: research progress[J]. Thermal Power Generation, 2020, 49(10): 21-29. | |
6 | Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596. |
7 | Shu G Q, Yu Z G, Tian H, et al. Potential of the transcritical Rankine cycle using CO2-based binary zeotropic mixtures for waste heat recovery[J]. Energy Conversion and Management, 2018, 174: 668-685. |
8 | Xia J X, Wang J F, Zhang G, et al. Thermo-economic analysis and comparative study of transcritical power cycles using CO2-based mixtures as working fluids[J]. Applied Thermal Engineering, 2018, 144: 31-44. |
9 | Heidemann R A, Khalil A M. The calculation of critical points[J]. AIChE Journal, 1980, 26(5): 769-779. |
10 | Michelsen M L, Heidemann R A. Calculation of critical points from cubic two-constant equations of state[J]. AIChE Journal, 1981, 27(3): 521-523. |
33 | Juntarachat N, Bello S, Privat R, et al. Validation of a new apparatus using the dynamic method for determining the critical properties of binary gas/gas mixtures[J]. Journal of Chemical & Engineering Data, 2013, 58(3): 671-676. |
34 | Olds R H, Reamer H H, Sage B H, et al. The n-butane-carbon dioxide system[J]. Industrial & Engineering Chemistry, 1949, 41(3): 475-482. |
35 | Hsu J J C, Nagarajan N, Robinson R L. Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems(1): Carbon dioxide + n-butane[J]. Journal of Chemical & Engineering Data, 1985, 30(4): 485-491. |
36 | Pozo de Fernandez M E, Zollweg J A, Streett W B. Vapor-liquid equilibrium in the binary system carbon dioxide + n-butane[J]. Journal of Chemical & Engineering Data, 1989, 34(3): 324-328. |
37 | Li J F, Qin Z F, Wang G F, et al. Critical temperatures and pressures of several binary and ternary mixtures concerning the alkylation of 2-methylpropane with 1-butene in the presence of methane or carbon dioxide[J]. Journal of Chemical & Engineering Data, 2007, 52(5): 1736-1740. |
38 | Lemmon E W, Bell I H, Huber M L, et al. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0[DB/OL]. (2018-05-21)[2023-12-27]. . |
39 | Poling B E, Prausnitz J M, O'Connell J P. The Properties of Gases and Liquids[M]. 5th ed. New York: McGraw-Hill, 2001. |
40 | Najafi H, Maghbooli B, Sobati M A. Prediction of true critical pressure of multi-component mixtures: extending fast estimation methods[J]. Thermochimica Acta, 2017, 655: 155-168. |
41 | 何茂刚, 王成杰, 辛楠, 等. 碳酸二甲酯与烷烃混合物的临界性质[J]. 工程热物理学报, 2018, 39(6): 1181-1185. |
He M G, Wang C J, Xin N, et al. The critical properties of dimethyl carbonate (DMC) + alkanes mixtures[J]. Journal of Engineering Thermophysics, 2018, 39(6): 1181-1185. | |
42 | Soo C B, Théveneau P, Coquelet C, et al. Determination of critical properties of pure and multi-component mixtures using a “dynamic-synthetic” apparatus[J]. The Journal of Supercritical Fluids, 2010, 55(2): 545-553. |
43 | He M G, Xin N, Liu Y, et al. Determination of critical properties for binary and ternary mixtures of short chain alcohols and alkanes using a flow apparatus[J]. The Journal of Supercritical Fluids, 2015, 104: 19-28. |
44 | Liu Y, Zhang Y, He M G, et al. Determination of the critical properties of C6—C10 n-alkanes and their binary systems using a flow apparatus[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3852-3857. |
45 | He M G, Xin N, Wang C J, et al. Experimental determination of critical data of multi-component mixtures containing potential gasoline additives 2-butanol by a flow-type apparatus[J]. The Journal of Chemical Thermodynamics, 2016, 101: 35-43. |
46 | Bell I H, Jäger A. Calculation of critical points from Helmholtz-energy-explicit mixture models[J]. Fluid Phase Equilibria, 2017, 433: 159-173. |
47 | Raabe G. Molecular simulation studies on the vapor–liquid phase equilibria of binary mixtures of R-1234yf and R-1234ze(E) with R-32 and CO2 [J]. Journal of Chemical & Engineering Data, 2013, 58(6): 1867-1873. |
48 | Kunz O, Wagner W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004[J]. Journal of Chemical & Engineering Data, 2012, 57(11): 3032-3091. |
[1] | Nan TU, Xiaoqun LIU, Chiyu WANG, Jiabin FANG. Study on adaptability of scaling law to residence time distribution in bubbling fluidized beds with continuous operation [J]. CIESC Journal, 2024, 75(2): 543-552. |
[2] | Zhi ZHU, Hengjie XU, Wei CHEN, Wenyuan MAO, Qiangguo DENG, Xuejian SUN. Study on critical chocked characteristics of supercritical carbon dioxide spiral groove dry gas seal under thermal-fluid coupling lubrication [J]. CIESC Journal, 2024, 75(2): 604-615. |
[3] | Lin WANG, Rongding JIANG, Chunxiao ZHANG, Xiuzhen LI, Yingying TAN. Evaluation and predictive study of the mixing rules for vapor-liquid equilibrium of R1234yf mixtures [J]. CIESC Journal, 2024, 75(2): 475-483. |
[4] | Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach [J]. CIESC Journal, 2024, 75(2): 553-565. |
[5] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
[6] | Donglin ZHONG, Suyun JIE, Miao DU, Pengju PAN, Guorong SHAN. Study on molecular weight-refractive index model of polymethylphenylsiloxane [J]. CIESC Journal, 2024, 75(1): 190-196. |
[7] | Wen WEN, Huiyan WANG, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth [J]. CIESC Journal, 2024, 75(1): 366-376. |
[8] | Xueyi MA, Keqin LIU, Jijiang HU, Zhen YAO. CFD studies on the mixing and reaction in a solution polymerization reactor for POE production [J]. CIESC Journal, 2024, 75(1): 322-337. |
[9] | Zexin ZHANG, Weizhong ZHENG, Yisheng XU, Dongdong HU, Xinyu ZHUO, Yuan ZONG, Weizhen SUN, Ling ZHAO. Research progress of wafer cleaning and selective etching in supercritical carbon dioxide media [J]. CIESC Journal, 2024, 75(1): 110-119. |
[10] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[11] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[12] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[13] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[14] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[15] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||