CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5249-5261.DOI: 10.11949/0438-1157.20250247
• Intelligent process engineering • Previous Articles Next Articles
Xugang FENG1,2(
), Lei TANG1, Shuo AN1, Ke YANG1, Lu WANG3, Dezhi TANG1, Zhengbing WANG1(
), Chuanwu LIU4
Received:2025-03-14
Revised:2025-06-23
Online:2025-11-25
Published:2025-10-25
Contact:
Zhengbing WANG
冯旭刚1,2(
), 唐雷1, 安硕1, 杨克1, 王璐3, 唐得志1, 王正兵1(
), 柳传武4
通讯作者:
王正兵
作者简介:冯旭刚(1979—),男,博士,教授,fxg773@ahut.edu.cn
基金资助:CLC Number:
Xugang FENG, Lei TANG, Shuo AN, Ke YANG, Lu WANG, Dezhi TANG, Zhengbing WANG, Chuanwu LIU. Water quality prediction in wastewater treatment based on data decomposition and dung beetle optimized TCN-BiGRU/BiLSTM[J]. CIESC Journal, 2025, 76(10): 5249-5261.
冯旭刚, 唐雷, 安硕, 杨克, 王璐, 唐得志, 王正兵, 柳传武. 基于数据分解与蜣螂优化TCN-BiGRU/BiLSTM污水处理水质预测[J]. 化工学报, 2025, 76(10): 5249-5261.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 出水COD | 出水TN |
|---|---|---|
| 进水流量 | 0.0246 | 0.0182 |
| 进水COD | 0.1986 | -0.0177 |
| 进水NH3 | -0.0178 | -0.1251 |
| 进水TP | 0.2478 | 0.8195 |
| 进水TN | 0.1722 | 0.4840 |
| 高效池出水TP | 0.0463 | -0.0868 |
| 溶解氧 | 0.1349 | 0.0358 |
| 硝态氮 | 0.0496 | -0.0146 |
| 提升流量 | 0.0043 | -0.0299 |
| 硝化液回流 | 0.0859 | 0.0112 |
| 污泥回流 | 0.0266 | 0.0098 |
| 出水流量 | -0.0105 | -0.0292 |
| 当前加药量 | -0.0121 | 0.0019 |
Table 1 Results of PCC correlation analysis
| 参数 | 出水COD | 出水TN |
|---|---|---|
| 进水流量 | 0.0246 | 0.0182 |
| 进水COD | 0.1986 | -0.0177 |
| 进水NH3 | -0.0178 | -0.1251 |
| 进水TP | 0.2478 | 0.8195 |
| 进水TN | 0.1722 | 0.4840 |
| 高效池出水TP | 0.0463 | -0.0868 |
| 溶解氧 | 0.1349 | 0.0358 |
| 硝态氮 | 0.0496 | -0.0146 |
| 提升流量 | 0.0043 | -0.0299 |
| 硝化液回流 | 0.0859 | 0.0112 |
| 污泥回流 | 0.0266 | 0.0098 |
| 出水流量 | -0.0105 | -0.0292 |
| 当前加药量 | -0.0121 | 0.0019 |
| 参数 | 出水COD | 出水TN |
|---|---|---|
| 进水流量 | -0.0556 | 0.0251 |
| 进水COD | 0.1414 | 0.0225 |
| 进水NH3 | 0.0248 | -0.0448 |
| 进水TP | 0.0907 | 0.2182 |
| 进水TN | 0.1185 | 0.2384 |
| 高效池出水TP | 0.1822 | -0.0343 |
| 溶解氧 | 0.3215 | 0.0705 |
| 硝态氮 | 0.0274 | -0.0099 |
| 提升流量 | -0.0646 | 0.0038 |
| 硝化液回流 | 0.0994 | 0.0145 |
| 污泥回流 | -0.0521 | 0.0162 |
| 出水流量 | -0.0513 | -0.0200 |
| 当前加药量 | 0.2004 | -0.0059 |
Table 2 Results of SCC correlation analysis
| 参数 | 出水COD | 出水TN |
|---|---|---|
| 进水流量 | -0.0556 | 0.0251 |
| 进水COD | 0.1414 | 0.0225 |
| 进水NH3 | 0.0248 | -0.0448 |
| 进水TP | 0.0907 | 0.2182 |
| 进水TN | 0.1185 | 0.2384 |
| 高效池出水TP | 0.1822 | -0.0343 |
| 溶解氧 | 0.3215 | 0.0705 |
| 硝态氮 | 0.0274 | -0.0099 |
| 提升流量 | -0.0646 | 0.0038 |
| 硝化液回流 | 0.0994 | 0.0145 |
| 污泥回流 | -0.0521 | 0.0162 |
| 出水流量 | -0.0513 | -0.0200 |
| 当前加药量 | 0.2004 | -0.0059 |
| 出水TN | 样本熵 | 出水COD | 样本熵 |
|---|---|---|---|
| IMF1 | 0.1438 | IMF1 | 0.0446 |
| IMF2 | 0.4795 | IMF2 | 0.2601 |
| IMF3 | 0.5517 | IMF3 | 0.5427 |
| IMF4 | 0.5161 | IMF4 | 0.5920 |
| IMF5 | 0.4250 | IMF5 | 0.5774 |
| IMF6 | 0.4354 | IMF6 | 0.5716 |
| IMF7 | 0.6852 | IMF7 | 0.7001 |
| IMF8 | 0.6992 | IMF8 | 0.7165 |
| IMF9 | 0.5653 | IMF9 | 0.6845 |
| — | — | IMF10 | 0.6040 |
Table 3 Sample entropy results
| 出水TN | 样本熵 | 出水COD | 样本熵 |
|---|---|---|---|
| IMF1 | 0.1438 | IMF1 | 0.0446 |
| IMF2 | 0.4795 | IMF2 | 0.2601 |
| IMF3 | 0.5517 | IMF3 | 0.5427 |
| IMF4 | 0.5161 | IMF4 | 0.5920 |
| IMF5 | 0.4250 | IMF5 | 0.5774 |
| IMF6 | 0.4354 | IMF6 | 0.5716 |
| IMF7 | 0.6852 | IMF7 | 0.7001 |
| IMF8 | 0.6992 | IMF8 | 0.7165 |
| IMF9 | 0.5653 | IMF9 | 0.6845 |
| — | — | IMF10 | 0.6040 |
| 测试函数 | 指标 | GWO | NGO | SSA | DBO | 改进DBO |
|---|---|---|---|---|---|---|
| F1(x) | 最优值 | 48.0223 | 7.8662×10-3 | 3.7741×10-25 | 1.316×10-167 | 0 |
| 平均值 | 312.5071 | 1.2333×10-1 | 6.1839×10-6 | 4.435×10-12 | 3.3856×10-23 | |
| 标准差 | 191.9652 | 1.725×10-1 | 2.4195×10-5 | 2.2499×10-11 | 1.8543×10-22 | |
| F2(x) | 最优值 | 8.2864×10-3 | 1.5513×10-9 | 1.7879×10-8 | 4.4409×10-16 | 4.4409×10-16 |
| 平均值 | 2.4754×10-2 | 4.3754×10-7 | 4.3552×10-8 | 1.4×10-9 | 4.4409×10-16 | |
| 标准差 | 8.4283×10-3 | 6.9835×10-7 | 2.4538×10-8 | 4.9398×10-9 | 0 |
Table 4 Comparison of test results of each algorithm
| 测试函数 | 指标 | GWO | NGO | SSA | DBO | 改进DBO |
|---|---|---|---|---|---|---|
| F1(x) | 最优值 | 48.0223 | 7.8662×10-3 | 3.7741×10-25 | 1.316×10-167 | 0 |
| 平均值 | 312.5071 | 1.2333×10-1 | 6.1839×10-6 | 4.435×10-12 | 3.3856×10-23 | |
| 标准差 | 191.9652 | 1.725×10-1 | 2.4195×10-5 | 2.2499×10-11 | 1.8543×10-22 | |
| F2(x) | 最优值 | 8.2864×10-3 | 1.5513×10-9 | 1.7879×10-8 | 4.4409×10-16 | 4.4409×10-16 |
| 平均值 | 2.4754×10-2 | 4.3754×10-7 | 4.3552×10-8 | 1.4×10-9 | 4.4409×10-16 | |
| 标准差 | 8.4283×10-3 | 6.9835×10-7 | 2.4538×10-8 | 4.9398×10-9 | 0 |
| 预测输出 | 模型 | RMSE/(mg/L) | MAE/(mg/L) | R2 |
|---|---|---|---|---|
| 出水TN | CNN-LSTM | 0.42492 | 0.31627 | 0.91645 |
| VMD-TCN-BiGRU | 0.41342 | 0.31322 | 0.92091 | |
| VMD-TCN-BiLSTM | 0.39015 | 0.30686 | 0.92956 | |
| VMD-TCN-BiGRU/BiLSTM | 0.37527 | 0.28248 | 0.93483 | |
| IVMD-IDBO-TCN-BiGRU/BiLSTM | 0.22311 | 0.15872 | 0.97696 | |
| 出水COD | CNN-LSTM | 0.82814 | 0.65546 | 0.91116 |
| VMD-TCN-BiGRU | 0.78279 | 0.62071 | 0.92101 | |
| VMD-TCN-BiLSTM | 0.73040 | 0.57513 | 0.93123 | |
| VMD-TCN-BiGRU/BiLSTM | 0.60840 | 0.48086 | 0.95228 | |
| IVMD-IDBO-TCN-BiGRU/BiLSTM | 0.39410 | 0.29148 | 0.97999 |
Table 5 Comparison of test set metrics for TN and COD prediction results from five models
| 预测输出 | 模型 | RMSE/(mg/L) | MAE/(mg/L) | R2 |
|---|---|---|---|---|
| 出水TN | CNN-LSTM | 0.42492 | 0.31627 | 0.91645 |
| VMD-TCN-BiGRU | 0.41342 | 0.31322 | 0.92091 | |
| VMD-TCN-BiLSTM | 0.39015 | 0.30686 | 0.92956 | |
| VMD-TCN-BiGRU/BiLSTM | 0.37527 | 0.28248 | 0.93483 | |
| IVMD-IDBO-TCN-BiGRU/BiLSTM | 0.22311 | 0.15872 | 0.97696 | |
| 出水COD | CNN-LSTM | 0.82814 | 0.65546 | 0.91116 |
| VMD-TCN-BiGRU | 0.78279 | 0.62071 | 0.92101 | |
| VMD-TCN-BiLSTM | 0.73040 | 0.57513 | 0.93123 | |
| VMD-TCN-BiGRU/BiLSTM | 0.60840 | 0.48086 | 0.95228 | |
| IVMD-IDBO-TCN-BiGRU/BiLSTM | 0.39410 | 0.29148 | 0.97999 |
| 预测对象 | 模型 | RMSE/(mg/L) | MAE/(mg/L) | R2 |
|---|---|---|---|---|
| 出水COD | model1 | 0.71046 | 0.546 | 0.93497 |
| model2 | 0.5985 | 0.4817 | 0.95382 | |
| model3 | 0.56179 | 0.44734 | 0.95971 | |
| model* | 0.39410 | 0.29148 | 0.97999 | |
| 出水TN | model1 | 0.38107 | 0.29535 | 0.93192 |
| model2 | 0.32722 | 0.25276 | 0.94989 | |
| model3 | 0.28058 | 0.22293 | 0.96322 | |
| model* | 0.22311 | 0.15872 | 0.97696 |
Table 6 Prediction evaluation indicators for ablation experiments
| 预测对象 | 模型 | RMSE/(mg/L) | MAE/(mg/L) | R2 |
|---|---|---|---|---|
| 出水COD | model1 | 0.71046 | 0.546 | 0.93497 |
| model2 | 0.5985 | 0.4817 | 0.95382 | |
| model3 | 0.56179 | 0.44734 | 0.95971 | |
| model* | 0.39410 | 0.29148 | 0.97999 | |
| 出水TN | model1 | 0.38107 | 0.29535 | 0.93192 |
| model2 | 0.32722 | 0.25276 | 0.94989 | |
| model3 | 0.28058 | 0.22293 | 0.96322 | |
| model* | 0.22311 | 0.15872 | 0.97696 |
| [1] | Deng T A, Chau K W, Duan H F. Machine learning based marine water quality prediction for coastal hydro-environment management[J]. Journal of Environmental Management, 2021, 284: 112051. |
| [2] | Ly Q V, Truong V H, Ji B X, et al. Exploring potential machine learning application based on big data for prediction of wastewater quality from different full-scale wastewater treatment plants[J]. Science of the Total Environment, 2022, 832: 154930. |
| [3] | 陶虎春, 佟浩, 王健, 等. 碳氮比对A/O-MBR工艺中污水脱氮除磷的影响研究[J]. 北京大学学报(自然科学版), 2022, 58(4): 680-686. |
| Tao H C, Tong H, Wang J, et al. Effects of carbon-to-nitrogen ratio on nitrogen and phosphate removal in A/O-MBR wastewater treatment process[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(4): 680-686. | |
| [4] | 李爱民, 范猛, 秦光铎, 等. 卷积神经网络模型的遥感反演水质参数COD[J]. 光谱学与光谱分析, 2023, 43(2): 651-656. |
| Li A M, Fan M, Qin G D, et al. Water quality parameter COD retrieved from remote sensing based on convolutional neural network model[J]. Spectroscopy and Spectral Analysis, 2023, 43(2): 651-656. | |
| [5] | 张东, 葛文彪, 赵爱萍, 等. 城镇生活污水处理厂出水硝酸盐浓度及同位素组成的影响因素[J]. 环境科学, 2023, 44(6): 3301-3308. |
| Zhang D, Ge W B, Zhao A P, et al. Factors affecting nitrate concentrations and nitrogen and oxygen isotope values of effluents from waste water treatment plant[J]. Environmental Science, 2023, 44(6): 3301-3308. | |
| [6] | 郭鑫, 李文静, 乔俊飞. 基于自组织模块化神经网络的污水处理过程出水参数预测[J]. 化工学报, 2024, 75(9): 3242-3254. |
| Guo X, Li W J, Qiao J F. Prediction of effluent parameters in wastewater treatment process using self-organizing modular neural network[J]. CIESC Journal, 2024, 75(9): 3242-3254. | |
| [7] | 张翔宇, 范业弘, 朱晗彬, 等. 城镇中小规模污水处理厂碳排放分析及碳削减对策[J]. 环境科学, 2025, 46(1): 107-117. |
| Zhang X Y, Fan Y H, Zhu H B, et al. Carbon emission analysis and carbon reduction strategy of small and medium-scale municipal wastewater treatment plants in cities and towns[J]. Environmental Science, 2025, 46(1): 107-117. | |
| [8] | 柴伟, 郭龙航, 池彬彬. 污水处理厂出水水质变量区间预测建模[J]. 化工学报, 2019, 70(9): 3449-3457. |
| Chai W, Guo L H, Chi B B. Interval model for predicting effluent quality variables of wastewater treatment plants[J]. CIESC Journal, 2019, 70(9): 3449-3457. | |
| [9] | 肖红军, 刘乙奇, 黄道平. 面向污水处理的动态变分贝叶斯混合因子故障诊断[J]. 控制理论与应用, 2016, 33(11): 1519-1526. |
| Xiao H J, Liu Y Q, Huang D P. Dynamic fault diagnosis via variational Bayesian mixture factor analysis with application to wastewater treatment[J]. Control Theory & Applications, 2016, 33(11): 1519-1526. | |
| [10] | Wang R, Yu Y D, Chen Y W, et al. Model construction and application for effluent prediction in wastewater treatment plant: data processing method optimization and process parameters integration[J]. Journal of Environmental Management, 2022, 302: 114020. |
| [11] | 许玉格, 刘莉, 罗飞. 基于自优化的多属性高斯核函数相关向量机方法[J]. 华南理工大学学报(自然科学版), 2017, 45(1): 88-94. |
| Xu Y G, Liu L, Luo F. A self-optimal relevance vector machine with multiple-attribute Gaussian kernel functions[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(1): 88-94. | |
| [12] | Jana D K, Bhunia P, Das Adhikary S, et al. Optimization of effluents using artificial neural network and support vector regression in detergent industrial wastewater treatment[J]. Cleaner Chemical Engineering, 2022, 3: 100039. |
| [13] | Lotfi K, Bonakdari H, Ebtehaj I, et al. Predicting wastewater treatment plant quality parameters using a novel hybrid linear-nonlinear methodology[J]. Journal of Environmental Management, 2019, 240: 463-474. |
| [14] | El-Rawy M, Abd-Ellah M K, Fathi H, et al. Forecasting effluent and performance of wastewater treatment plant using different machine learning techniques[J]. Journal of Water Process Engineering, 2021, 44: 102380. |
| [15] | Farhi N, Kohen E, Mamane H, et al. Prediction of wastewater treatment quality using LSTM neural network[J]. Environmental Technology & Innovation, 2021, 23: 101632. |
| [16] | Xie Y F, Chen Y Q, Wei Q, et al. A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant[J]. Water Research, 2024, 250: 121092. |
| [17] | Liu T X, Liu W, Liu Z H, et al. Ensemble water quality forecasting based on decomposition, sub-model selection, and adaptive interval[J]. Environmental Research, 2023, 237: 116938. |
| [18] | 张京新, 何皎洁, 蔡庆旺, 等. 基于二次分解和BiLSTM的污水厂出水COD浓度预测[J]. 化工学报, 2025, 76(6): 2859-2871. |
| Zhang J X, He J J, Cai Q W, et al. Prediction of COD concentration in effluent of sewage plant based on secondary decomposition and BiLSTM[J]. CIESC Journal, 2025, 76(6): 2859-2871. | |
| [19] | Hwangbo S, Al R, Chen X M, et al. Integrated model for understanding N2O emissions from wastewater treatment plants: a deep learning approach[J]. Environmental Science & Technology, 2021, 55(3): 2143-2151. |
| [20] | 雷富强, 成政, 薛正雨, 等. 基于改进蜣螂优化算法的巷战搜救路径规划[J]. 计算机工程与应用, 2025: 61(19): 324-339. |
| Lei F Q, Cheng Z, Xue Z Y, et al. Path planning of street fighting search and rescue based on improved dung beetle optimization algorithm[J]. Computer Engineering and Applications, 2025: 61(19): 324-339. | |
| [21] | 史彭珍, 魏霞, 张春梅, 等. 基于VMD-BOA-LSSVM-AdaBoost的短期风电功率预测[J]. 太阳能学报, 2024, 45(1): 226-233. |
| Shi P Z, Wei X, Zhang C M, et al. Short-term wind power prediction based on VMD-BOA-LSSVM-AdaBoost[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 226-233. | |
| [22] | 王君瑞, 吴新举, 赵东琦, 等. 基于WOA-VMD与PSO-SVM的锂离子电池内短路故障诊断方法[J]. 工程科学学报, 2023, 45(12): 2162-2172. |
| Wang J R, Wu X J, Zhao D Q, et al. Research on internal short-circuit fault diagnosis methods for lithium-ion batteries based on WOA-VMD and PSO-SVM[J]. Chinese Journal of Engineering, 2023, 45(12): 2162-2172. | |
| [23] | 宋江涛, 崔双喜, 樊小朝, 等. 基于SGMD-SE与优化TCN-BiLSTM/BiGRU的超短期风功率预测[J]. 太阳能学报, 2024, 45(10): 588-596. |
| Song J T, Cui S X, Fan X C, et al. Ultra-short-term wind power prediction based on SGMD-SE and optimized TCN-BiLSTM/BiGRU[J]. Acta Energiae Solaris Sinica, 2024, 45(10): 588-596. | |
| [24] | 温廷新, 郭晓赛. 基于特征组合的ECA-TCN光伏发电功率预测模型[J]. 太阳能学报, 2024, 45(12): 94-100. |
| Wen T X, Guo X S. A photovoltaic power prediction model based on feature combination and ECA-TCN[J]. Acta Energiae Solaris Sinica, 2024, 45(12):94-100. | |
| [25] | 王文川, 顾淼. 基于SGMD-SE-AVOA-LSTM耦合模型的月径流预测[J]. 应用基础与工程科学学报, 2024, 32(6): 1755-1771. |
| Wang W C, Gu M. Monthly runoff prediction based on SGMD-SE-AVOA-LSTM coupling model[J]. Journal of Basic Science and Engineering, 2024, 32(6): 1755-1771. | |
| [26] | 李东阳, 权紫轩, 张彪, 等. 基于SSA-LSTM的海洋条件下稳压器液位回归预测研究[J]. 核动力工程, 2025, 46(2): 293-299. |
| Li D Y, Quan Z X, Zhang B, et al. Study on regression prediction of regulator liquid level under ocean conditions based on SSA-LSTM[J]. Nuclear Power Engineering, 2025, 46(2): 293-299. | |
| [27] | Zhong K Y, Li Y E, Huan W W, et al. A novel near infrared spectroscopy analytical strategy for soil nutrients detection based on the DBO-SVR method[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 315: 124259. |
| [28] | 吴亚中, 陈璐, 马强, 等. 多策略增强的蜣螂优化算法及其工程应用[J]. 华中科技大学学报(自然科学版), 2025, 53(2): 95-103. |
| Wu Y Z, Chen L, Ma Q, et al. Multi-strategy enhanced dung beetle optimizer algorithm and its engineering application[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2025, 53(2): 95-103. | |
| [29] | Xue J K, Shen B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. |
| [30] | 吐松江·卡日, 雷柯松, 马小晶, 等. 基于LSTM-Attention和CNN-BiGRU误差修正的光伏功率预测[J]. 太阳能学报, 2024, 45(12): 85-93. |
| Kari·Tusongjiang, Lei K S, Ma X J, et al. photovoltaic power prediction based on LSTM-Attention and CNN-BiGRU error correction[J]. Acta Energiae Solaris Sinica, 2024, 45(12): 85-93. | |
| [31] | 陈勇刚, 刘康妮, 王帅. 基于BiGRU-Attention改进的航空设备故障知识图谱构建[J]. 航空学报, 2024, 45(18): 168-181. |
| Chen Y G, Liu K N, Wang S. Fault knowledge graph construction for aviation equipment based on BiGRU-Attention improvement[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 168-181. | |
| [32] | 张殿华, 李贺, 武文腾, 等. 基于Stacking集成学习的热轧带钢凸度诊断模型[J]. 中南大学学报(自然科学版), 2024, 55(10): 3673-3682. |
| Zhang D H, Li H, Wu W T, et al. Crown diagnosis model of hot-rolled strip crown based onStacking ensemble learning[J]. Journal of Central South University (Science and Technology), 2024, 55(10): 3673-3682. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [3] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [4] | Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler [J]. CIESC Journal, 2025, 76(S1): 426-434. |
| [5] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [6] | Zhihong JIANG, Qian LEI, Yinjun ZHU, Zhigang LEI, Honglin CHEN. Study on physical property model and enrichment process of trioxane system [J]. CIESC Journal, 2025, 76(9): 4872-4881. |
| [7] | Guangzheng ZHOU, Zihan ZHONG, Yanqun HUANG, Xuezhong WANG. Intelligent monitoring of crystallization processes based on in situ imaging and image analysis [J]. CIESC Journal, 2025, 76(9): 4351-4368. |
| [8] | Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations [J]. CIESC Journal, 2025, 76(9): 4694-4708. |
| [9] | Zhengzong HUANG, Kecheng LIU, Zefang LI, Pingsheng ZENG, YongFu LIU, Hongjie YAN, Liu LIU. Numerical simulation and field synergy optimization of brick-built heat exchange chamber in zinc refining furnace [J]. CIESC Journal, 2025, 76(9): 4425-4439. |
| [10] | Sanyi WANG, Wenlai HUANG. Modeling and optimization of electrochemical ammonia synthesis [J]. CIESC Journal, 2025, 76(9): 4474-4486. |
| [11] | Xuewen LI, Zhihong WANG, Yang GAO, Ming'ou WU, Wenhao MA, Renmin TAN. Multi-objective optimization of amine-based desulfurization regeneration system integrated with heat pump technology [J]. CIESC Journal, 2025, 76(9): 4563-4577. |
| [12] | Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling [J]. CIESC Journal, 2025, 76(9): 4933-4943. |
| [13] | Xu GUO, Jining JIA, Kejian YAO. Modeling of batch distillation process based on optimized CNN-BiLSTM neural network [J]. CIESC Journal, 2025, 76(9): 4613-4629. |
| [14] | Jie WANG, Qucheng LIN, Xianming ZHANG. Global optimization of mixed gas multistage membrane separation system based on decomposition algorithm [J]. CIESC Journal, 2025, 76(9): 4670-4682. |
| [15] | Lanhao LOU, Lipeng YANG, Xiaoguang YANG. Review of parameter identification for physics-based lithium-ion battery models [J]. CIESC Journal, 2025, 76(9): 4369-4382. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||