CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5414-5425.DOI: 10.11949/0438-1157.20250206
• Energy and environmental engineering • Previous Articles Next Articles
Fuhan WANG1(
), Huiru WANG1,2(
), Chengzhuo ZHAO1, Zhenyu LIU3, Weijun LIU1,2, Hongyou BIAN1,2
Received:2025-03-03
Revised:2025-05-30
Online:2025-11-25
Published:2025-10-25
Contact:
Huiru WANG
王芾涵1(
), 王慧儒1,2(
), 赵成卓1, 刘振宇3, 刘伟军1,2, 卞宏友1,2
通讯作者:
王慧儒
作者简介:王芾涵(1999—),男,硕士研究生,2721192334@qq.com
基金资助:CLC Number:
Fuhan WANG, Huiru WANG, Chengzhuo ZHAO, Zhenyu LIU, Weijun LIU, Hongyou BIAN. Experimental study on thermal storage performance of paraffin/TPMS porous AlSi10Mg alloy composite materials[J]. CIESC Journal, 2025, 76(10): 5414-5425.
王芾涵, 王慧儒, 赵成卓, 刘振宇, 刘伟军, 卞宏友. 石蜡/TPMS结构多孔AlSi10Mg合金复合相变材料蓄热性能实验研究[J]. 化工学报, 2025, 76(10): 5414-5425.
Add to citation manager EndNote|Ris|BibTeX
| Element | Content/%(mass) |
|---|---|
| Si | 9.64 |
| Mg | 0.38 |
| Ti | <0.01 |
| Ni | <0.01 |
| Mn | <0.01 |
| Cu | <0.01 |
| Fe | <0.01 |
| Zn | <0.01 |
| Pb | <0.01 |
| Sn | <0.01 |
| O | 0.036 |
| Al | balance |
Table 1 Chemical composition of AlSi10Mg alloy powder
| Element | Content/%(mass) |
|---|---|
| Si | 9.64 |
| Mg | 0.38 |
| Ti | <0.01 |
| Ni | <0.01 |
| Mn | <0.01 |
| Cu | <0.01 |
| Fe | <0.01 |
| Zn | <0.01 |
| Pb | <0.01 |
| Sn | <0.01 |
| O | 0.036 |
| Al | balance |
| [1] | Khan J, Singh P. Review on phase change materials for spacecraft avionics thermal management[J]. Journal of Energy Storage, 2024, 87: 111369. |
| [2] | Chen H J, Abidi A, Hussein A K, et al. Investigation of the use of extended surfaces in paraffin wax phase change material in thermal management of a cylindrical lithium-ion battery: applicable in the aerospace industry[J]. Journal of Energy Storage, 2022, 45: 103685. |
| [3] | Huang X, Alva G, Jia Y T, et al. Morphological characterization and applications of phase change materials in thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 128-145. |
| [4] | Lin Y X, Jia Y T, Alva G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742. |
| [5] | Liu L K, Su D, Tang Y J, et al. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 305-317. |
| [6] | Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67-123. |
| [7] | 施尚, 余建祖, 陈梦东, 等. 基于泡沫铜/石蜡的锂电池热管理系统性能[J]. 化工学报, 2017, 68(7): 2678-2683. |
| Shi S, Yu J Z, Chen M D, et al. Battery thermal management system using phase change materials and foam copper[J]. CIESC Journal, 2017, 68(7): 2678-2683. | |
| [8] | 韦攀, 喻家帮, 郭增旭, 等. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856. |
| Wei P, Yu J B, Guo Z X, et al. Experimental visualization on thermal energy storage enhancement through metal foam filled annuli[J]. CIESC Journal, 2019, 70(3): 850-856. | |
| [9] | Ding C, Shan Y J, Nie Q. Thermal performance of phase change material-based heat sink with hybrid fin-metal foam structure under hypergravity conditions[J]. International Journal of Energy Research, 2022, 46(5): 5811-5827. |
| [10] | Almesmari A, Alagha A N, Naji M M, et al. Recent advancements in design optimization of lattice-structured materials[J]. Advanced Engineering Materials, 2023, 25(17): 2201780. |
| [11] | Feng J W, Fu J Z, Yao X H, et al. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 022001. |
| [12] | Samson S, Tran P, Marzocca P. Design and modelling of porous gyroid heatsinks: influences of cell size, porosity and material variation[J]. Applied Thermal Engineering, 2023, 235: 121296. |
| [13] | Cheng Z L, Xu R N, Jiang P X. Morphology, flow and heat transfer in triply periodic minimal surface based porous structures[J]. International Journal of Heat and Mass Transfer, 2021, 170: 120902. |
| [14] | Oh S H, An C H, Seo B, et al. Functional morphology change of TPMS structures for design and additive manufacturing of compact heat exchangers[J]. Additive Manufacturing, 2023, 76: 103778. |
| [15] | Fabrizio Q, Boschetto A, Rovatti L, et al. Replication casting of open-cell AlSi7Mg0.3 foams[J]. Materials Letters, 2011, 65(17/18): 2558-2561. |
| [16] | Cheng Y, Li Y X, Chen X, et al. Fabrication of aluminum foams with small pore size by melt foaming method[J]. Metallurgical and Materials Transactions B, 2017, 48(2): 754-762. |
| [17] | Huang R X, Ma S Q, Zhang M D, et al. Dynamic deformation and failure process of quasi-closed-cell aluminum foam manufactured by direct foaming technique[J]. Materials Science and Engineering: A, 2019, 756: 302-311. |
| [18] | Banhart J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46(6): 559-632. |
| [19] | Rodriguez-Contreras A, Punset M, Calero J A, et al. Powder metallurgy with space holder for porous titanium implants: a review[J]. Journal of Materials Science & Technology, 2021, 76: 129-149. |
| [20] | Yamanoglu R, Bahador A, Kondoh K. Fabrication methods of porous titanium implants by powder metallurgy[J]. Transactions of the Indian Institute of Metals, 2021, 74(11): 2555-2567. |
| [21] | 刘伟, 李能, 周标, 等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20): 128-151, 159. |
| Liu W, Li N, Zhou B, et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering, 2019, 55(20): 128-151, 159. | |
| [22] | Changdar A, Chakraborty S S, Li Y C, et al. Laser additive manufacturing of aluminum-based stochastic and nonstochastic cellular materials[J]. Journal of Materials Science & Technology, 2024, 183: 89-119. |
| [23] | Song B, Zhao X, Li S, et al. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: a review[J]. Frontiers of Mechanical Engineering, 2015, 10(2): 111-125. |
| [24] | Liu W J, Li W Q, Wang H R, et al. Surface modification of porous titanium and titanium alloy implants manufactured by selective laser melting: a review[J]. Advanced Engineering Materials, 2023, 25(21): 2300765. |
| [25] | 刘飞, 唐艺川, 谢海琼, 等. 选区激光熔化成形极小曲面点阵的结构和性能优化[J]. 中国激光, 2023, 50(12): 1202303. |
| Liu F, Tang Y C, Xie H Q, et al. Optimization of structure and performance of minimal surface lattice formed by selective laser melting[J]. Chinese Journal of Lasers, 2023, 50(12): 1202303. | |
| [26] | Yan C Z, Hao L, Hussein A, et al. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51: 61-73. |
| [27] | Bobbert F S L, Lietaert K, Eftekhari A A, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties[J]. Acta Biomaterialia, 2017, 53: 572-584. |
| [28] | Kotadia H R, Gibbons G, Das A, et al. A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties[J]. Additive Manufacturing, 2021, 46: 102155. |
| [29] | Biffi C A, Bassani P, Fiocchi J, et al. Investigation of high temperature behavior of AlSi10Mg produced by selective laser melting[J]. Materials Chemistry and Physics, 2021, 259: 123975. |
| [30] | Tan Q Y, Liu Y G, Fan Z Q, et al. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy[J]. Journal of Materials Science & Technology, 2020, 58: 34-45. |
| [31] | Mehta A, Zhou L, Huynh T, et al. Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion[J]. Additive Manufacturing, 2021, 41: 101966. |
| [32] | Li G, Li X W, Guo C, et al. Investigation into the effect of energy density on densification, surface roughness and loss of alloying elements of 7075 aluminium alloy processed by laser powder bed fusion[J]. Optics & Laser Technology, 2022, 147: 107621. |
| [33] | Zhou Y, Ning F D, Zhang P, et al. Geometrical, microstructural, and mechanical properties of curved-surface AlSi10Mg parts fabricated by powder bed fusion additive manufacturing[J]. Materials & Design, 2021, 198: 109360. |
| [34] | Tian Y, Liu X L, Luo Q Y, et al. Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123944. |
| [35] | Zhang T, Liu F, Deng X, et al. Experimental study on the thermal storage performance of phase change materials embedded with additively manufactured triply periodic minimal surface architected lattices[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123452. |
| [36] | Qureshi Z A, Al-Omari S A B, Elnajjar E, et al. Nature-inspired triply periodic minimal surface-based structures in sheet and solid configurations for performance enhancement of a low-thermal-conductivity phase-change material for latent-heat thermal-energy-storage applications[J]. International Journal of Thermal Sciences, 2022, 173: 107361. |
| [37] | Bian Z, Hou F, Wang H, et al. Experimental and numerical investigations of enhanced thermal energy storage performance for foam/paraffin composite under different heating conditions[J]. Journal of Energy Storage, 2022, 55: 105506. |
| [38] | Tang W, Zhou H, Zeng Y, et al. Analysis on the convective heat transfer process and performance evaluation of triply periodic minimal surface (TPMS) based on Diamond, Gyroid and Iwp[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123642. |
| [39] | Spierings A B, Schneider M, Eggenberger R. Comparison of density measurement techniques for additive manufactured metallic parts[J]. Rapid Prototyping Journal, 2011, 17(5): 380-386. |
| [40] | Catchpole-Smith S, Sélo R R J, Davis A W, et al. Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion[J]. Additive Manufacturing, 2019, 30: 100846. |
| [1] | Linhui YUAN, Yu WANG. Heat dissipation performance of single server immersion jet liquid cooling system [J]. CIESC Journal, 2025, 76(S1): 160-169. |
| [2] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [3] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
| [4] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [5] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [6] | Hongxin YU, Ningbo WANG, Yanhua GUO, Shuangquan SHAO. Numerical investigation on the flow and heat transfer characteristics of plate heat exchanger in dynamic ice storage system [J]. CIESC Journal, 2025, 76(S1): 106-113. |
| [7] | Shengmei ZHANG, Ming LI, Ying ZHANG, Xi YI, Yiting YANG, Yali LIU. Effects of emulsifier and reacting temperature on characteristics of phase change microcapsules [J]. CIESC Journal, 2025, 76(S1): 444-452. |
| [8] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [9] | Xianchao REN, Yaxiu GU, Shaobin DUAN, Wenzhu JIA, Hanlin LI. Experimental study on heat and mass transfer performance of elliptical tube-fin evaporative condenser [J]. CIESC Journal, 2025, 76(S1): 75-83. |
| [10] | Haimei LUO, Hong WANG, Zhaoming SUN, Yanhua YIN. Analysis and verification of calculation model of heat transfer coefficient of twin screw in the same direction [J]. CIESC Journal, 2025, 76(9): 4809-4823. |
| [11] | Wei ZHAO, Wenle XING, Zhaoxu HAN, Xingzhong YUAN, Longbo JIANG. Progress of g-C3N4-based metal-free heterojunction photocatalytic degradation of organic pollutants in water [J]. CIESC Journal, 2025, 76(9): 4752-4769. |
| [12] | Jinqi HU, Chunhua MIN, Xiaolong LI, Yuanhong FAN, Kun WANG. Enhanced fluid chaotic mixing and heat transfer with vibrating blade coupled with flexible plate [J]. CIESC Journal, 2025, 76(9): 4824-4837. |
| [13] | Linkai WU, Zhimin LIN, Liangbi WANG. Improvement and numerical validation of quasi-steady-state frosting model based on thermal and mass transfer effect [J]. CIESC Journal, 2025, 76(8): 4004-4016. |
| [14] | Hailong SHE, Guangzhong HU, Xiaoyu CUI, Zhongbin LIU, Di PENG, Hang LI. Performance study on layered microchannel distributed throttling cryocooler with different working fluids [J]. CIESC Journal, 2025, 76(8): 4017-4029. |
| [15] | Luyuan GONG, Zhenglong GUO, Denghui ZHAO, Yali GUO, Jian ZHOU, Qianqian HAN, Shengqiang SHEN. Study on heat transfer and dynamics character of condensation on different hydrophobic surface [J]. CIESC Journal, 2025, 76(8): 3932-3943. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||