CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5709-5719.DOI: 10.11949/0438-1157.20250414
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles
Shunjie WU1(
), Rongrong CAI1(
), A.A. Eliseev2, Lizhi ZHANG1(
)
Received:2025-04-18
Revised:2025-07-07
Online:2025-12-19
Published:2025-11-25
Contact:
Rongrong CAI, Lizhi ZHANG
武顺杰1(
), 蔡容容1(
), Eliseev A.A.2, 张立志1(
)
通讯作者:
蔡容容,张立志
作者简介:武顺杰(1998—),男,博士研究生,cesjwu@mail.scut.edu.cn
基金资助:CLC Number:
Shunjie WU, Rongrong CAI, A.A. Eliseev, Lizhi ZHANG. Numerical simulation study on particle orientation and anisotropic thermal conductivity in magnetic nanofluids[J]. CIESC Journal, 2025, 76(11): 5709-5719.
武顺杰, 蔡容容, Eliseev A.A., 张立志. 磁性纳米流体颗粒定向排布与各向异性导热的数值模拟研究[J]. 化工学报, 2025, 76(11): 5709-5719.
Add to citation manager EndNote|Ris|BibTeX
| 模拟参数 | 数值 | 单位 |
|---|---|---|
| 颗粒密度 | 5000 | kg/m3 |
| 颗粒半径 | 2.6×10-8 | m |
| Hamaker常数 | 8.5×10-20 | J |
| 颗粒体积分数φ | 1.0% | — |
| 磁场强度B | 0~1000 | G① |
| 流体密度 | 1000 | kg/m3 |
| 流体动力学黏度 | 0.001 | kg/(m·s) |
| 温度 | 335 | K |
| 计算域尺寸 | 3.22×10-6 | m |
| Zeta电势 | -0.015 | V |
Table 1 Simulation parameters
| 模拟参数 | 数值 | 单位 |
|---|---|---|
| 颗粒密度 | 5000 | kg/m3 |
| 颗粒半径 | 2.6×10-8 | m |
| Hamaker常数 | 8.5×10-20 | J |
| 颗粒体积分数φ | 1.0% | — |
| 磁场强度B | 0~1000 | G① |
| 流体密度 | 1000 | kg/m3 |
| 流体动力学黏度 | 0.001 | kg/(m·s) |
| 温度 | 335 | K |
| 计算域尺寸 | 3.22×10-6 | m |
| Zeta电势 | -0.015 | V |
颗粒均匀分布的 各工况纳米流体 | 颗粒体积分数或 热导率比 | 有效热导率增强keff/kf | ||
|---|---|---|---|---|
| T-LBM | Maxwell | Bruggeman | ||
不同颗粒体积分数的 SiO2/甲醇纳米流体 | 0.1% | 1.003 | 1.002 | 1.002 |
| 0.5% | 1.010 | 1.010 | 1.010 | |
| 1.0% | 1.022 | 1.020 | 1.020 | |
| 2.0% | 1.041 | 1.041 | 1.041 | |
| 5.0% | 1.103 | 1.103 | 1.108 | |
不同颗粒-基液热导率比的 纳米流体 | k(SiO2)/k(H2O) = 2.4 | 1.010 | 1.010 | 1.010 |
| k(CuO)/k(H2O) = 16.9 | 1.030 | 1.025 | 1.026 | |
| k(Fe3O4)/k(kerosene) = 76.9 | 1.038 | 1.029 | 1.030 | |
| k(Al2O3)/k(methanol) = 147.9 | 1.039 | 1.030 | 1.030 | |
| k(SiC)/k(H2O) = 288.1 | 1.040 | 1.030 | 1.031 | |
Table 2 Comparison of ETC results between T-LBM simulation and Maxwell and Bruggeman models
颗粒均匀分布的 各工况纳米流体 | 颗粒体积分数或 热导率比 | 有效热导率增强keff/kf | ||
|---|---|---|---|---|
| T-LBM | Maxwell | Bruggeman | ||
不同颗粒体积分数的 SiO2/甲醇纳米流体 | 0.1% | 1.003 | 1.002 | 1.002 |
| 0.5% | 1.010 | 1.010 | 1.010 | |
| 1.0% | 1.022 | 1.020 | 1.020 | |
| 2.0% | 1.041 | 1.041 | 1.041 | |
| 5.0% | 1.103 | 1.103 | 1.108 | |
不同颗粒-基液热导率比的 纳米流体 | k(SiO2)/k(H2O) = 2.4 | 1.010 | 1.010 | 1.010 |
| k(CuO)/k(H2O) = 16.9 | 1.030 | 1.025 | 1.026 | |
| k(Fe3O4)/k(kerosene) = 76.9 | 1.038 | 1.029 | 1.030 | |
| k(Al2O3)/k(methanol) = 147.9 | 1.039 | 1.030 | 1.030 | |
| k(SiC)/k(H2O) = 288.1 | 1.040 | 1.030 | 1.031 | |
Fig.3 Particle directional alignment under varying magnetic field intensities, with the aggregation number being the number of particles in a single chain
| [1] | Aneke M, Wang M H. Energy storage technologies and real life applications—a state of the art review[J]. Applied Energy, 2016, 179: 350-377. |
| [2] | Lenin R, Joy P A, Bera C. A review of the recent progress on thermal conductivity of nanofluid[J]. Journal of Molecular Liquids, 2021, 338: 116929. |
| [3] | Malekan M, Khosravi A, Zhao X W. The influence of magnetic field on heat transfer of magnetic nanofluid in a double pipe heat exchanger proposed in a small-scale CAES system[J]. Applied Thermal Engineering, 2019, 146: 146-159. |
| [4] | Sheikhpour M, Arabi M, Kasaeian A, et al. Role of nanofluids in drug delivery and biomedical technology: methods and applications[J]. Nanotechnology, Science and Applications, 2020, 13: 47-59. |
| [5] | Qi C, Tang J H, Fan F, et al. Effects of magnetic field on thermo-hydraulic behaviors of magnetic nanofluids in CPU cooling system[J]. Applied Thermal Engineering, 2020, 179: 115717. |
| [6] | 马连湘, 常强, 侯晓旭, 等. Fe3O4包覆碳纳米管磁流体制备及其在磁场中热导率的研究[J]. 功能材料, 2015, 46(24): 24114-24117. |
| Ma L X, Chang Q, Hou X X, et al. The study of preparation and thermal conductivity of magnetic nanofluid based Fe3O4 coated on carbon nanotubes nanoparticles in amagnetic field[J]. Journal of Functional Materials, 2015, 46(24): 24114-24117. | |
| [7] | Philip J, Shima P D, Raj B. Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures[J]. Applied Physics Letters, 2007, 91(20): 203108. |
| [8] | Hajiyan M, Ebadi S, Mahmud S, et al. Experimental investigation of the effect of an external magnetic field on the thermal conductivity and viscosity of Fe3O4-glycerol[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(2): 1451-1464. |
| [9] | Katiyar A, Dhar P, Nandi T, et al. Enhanced heat conduction characteristics of Fe, Ni and Co nanofluids influenced by magnetic field[J]. Experimental Thermal and Fluid Science, 2016, 78: 345-353. |
| [10] | Zhang J F. Lattice Boltzmann method for microfluidics: models and applications[J]. Microfluidics and Nanofluidics, 2011, 10(1): 1-28. |
| [11] | Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. |
| [12] | Liu H H, Surawanvijit S, Rallo R, et al. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation[J]. Environmental Science & Technology, 2011, 45(21): 9284-9292. |
| [13] | Chen Y J, Li Y Y, Liu Z H. Numerical simulations of forced convection heat transfer and flow characteristics of nanofluids in small tubes using two-phase models[J]. International Journal of Heat and Mass Transfer, 2014, 78: 993-1003. |
| [14] | Bahiraei M. A comprehensive review on different numerical approaches for simulation in nanofluids: traditional and novel techniques[J]. Journal of Dispersion Science and Technology, 2014, 35(7): 984-996. |
| [15] | Luding S. Introduction to discrete element methods[J]. European Journal of Environmental and Civil Engineering, 2008, 12(7/8): 785-826. |
| [16] | Noble D R, Torczynski J R. A lattice-Boltzmann method for partially saturated computational cells[J]. International Journal of Modern Physics C, 1998, 9(8): 1189-1201. |
| [17] | Fu S T, Su W T, Zhang H H, et al. An immersed moving boundary for fast discrete particle simulation with complex geometry[J]. Chemical Engineering Science, 2024, 283: 119407. |
| [18] | Li A, Ahmadi G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow[J]. Aerosol Science Technology, 1992, 16(4): 209-226. |
| [19] | Cunningham E. On the velocity of steady fall of spherical particles through fluid medium[J]. Proceedings of The Royal Society A-Mathematical Physical and Engineering Sciences, 1910, 83(563): 357-365. |
| [20] | Durhuus F L, Wandall L H, Boisen M H, et al. Simulated clustering dynamics of colloidal magnetic nanoparticles[J]. Nanoscale, 2021, 13(3): 1970-1981. |
| [21] | Agmo Hernández V. An overview of surface forces and the DLVO theory[J]. ChemTexts, 2023, 9(4): 10. |
| [22] | Hamaker H C. The London: van der Waals attraction between spherical particles[J]. Physica, 1937, 4(10): 1058-1072. |
| [23] | Ye Y, Cui A Y, Zhu L Q, et al. Electric-double-layer oriented field-screening effect on high-resolution electromechanical imaging in conductive solutions[J]. Physical Review Applied, 2019, 12(3): 034006. |
| [24] | Srinivasan S, van den Akker H E A, Shardt O. Inclusion of DLVO forces in simulations of non-Brownian solid suspensions: rheology and structure[J]. International Journal of Multiphase Flow, 2022, 149: 103929. |
| [25] | Karimnejad S, Delouei A A, Başağaoğlu H, et al. A review on contact and collision methods for multi-body hydrodynamic problems in complex flows[J]. Communications in Computational Physics, 2022, 32(4): 899-950. |
| [26] | Yang M M, Li S Q, Yao Q. Mechanistic studies of initial deposition of fine adhesive particles on a fiber using discrete-element methods[J]. Powder Technology, 2013, 248: 44-53. |
| [27] | Yue L Q, Chai Z H, Wang L, et al. A lattice Boltzmann model for the conjugate heat transfer[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120682. |
| [28] | Li L K, Chen C, Mei R W, et al. Conjugate heat and mass transfer in the lattice Boltzmann equation method[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2014, 89(4): 043308. |
| [29] | Tahmooressi H, Kasaeian A, Yavarinasab A, et al. Numerical simulation of nanoparticles size/aspect ratio effect on thermal conductivity of nanofluids using lattice Boltzmann method[J]. International Communications in Heat and Mass Transfer, 2021, 120: 105033. |
| [30] | Korba D, Wang N Q, Li L K. Accuracy of interface schemes for conjugate heat and mass transfer in the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119694. |
| [31] | 阚安康, 康利云, 曹丹, 等. 基于Lattice-Boltzmann方法的纳米颗粒多孔介质导热特性[J]. 化工学报, 2015, 66(11): 4412-4417. |
| Kan A K, Kang L Y, Cao D, et al. Thermal conduction characteristic of nano-granule porous material using lattice-Boltzmann method[J]. CIESC Journal, 2015, 66(11): 4412-4417. | |
| [32] | Guo Z L, Zheng C G, Shi B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11(4): 366-374. |
| [33] | Gnedin N Y, Semenov V A, Kravtsov A V. Enforcing the Courant-Friedrichs-Lewy condition in explicitly conservative local time stepping schemes[J]. Journal of Computational Physics, 2018, 359: 93-105. |
| [34] | Zhang P, Galindo-Torres S A, Tang H W, et al. An efficient discrete element lattice Boltzmann model for simulation of particle-fluid, particle-particle interactions[J]. Computers & Fluids, 2017, 147: 63-71. |
| [35] | Liu Z X, Zhu Y Z, Clausen J R, et al. Multiscale method based on coupled lattice-Boltzmann and Langevin-dynamics for direct simulation of nanoscale particle/polymer suspensions in complex flows[J]. International Journal for Numerical Methods in Fluids, 2019, 91(5): 228-246. |
| [36] | Fu S T, Wang L M. GPU-based unresolved LBM-DEM for fast simulation of gas-solid flows[J]. Chemical Engineering Journal, 2023, 465: 142898. |
| [37] | Maxwell J C. A Treatise on Electricity and Magnetism[M]. Cambridge, UK: Cambridge University Press, 2010. |
| [38] | Bruggeman D A G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen (Ⅰ): Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[J]. Annalen der Physik, 1935, 416(8): 665-679. |
| [39] | Barocas V H, Tranquillo R T. An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance[J]. Journal of Biomechanical Engineering, 1997, 119(2): 137-145. |
| [40] | Stylianopoulos T, Barocas V H. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls[J]. Journal of Biomechanical Engineering, 2007, 129(4): 611-618. |
| [41] | Wei W, Cai J C, Hu X Y, et al. Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids[J]. Physics Letters A, 2016, 380(37): 2953-2956. |
| [42] | Evans W, Prasher R, Fish J, et al. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1431-1438. |
| [43] | Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187-191. |
| [44] | Yamada E, Ota T. Effective thermal conductivity of dispersed materials[J]. Wärme-und Stoffübertragung, 1980, 13(1): 27-37. |
| [45] | Fricke H. A mathematical treatment of the electric conductivity and capacity of disperse systems (Ⅰ): The electric conductivity of a suspension of homogeneous spheroids[J]. Physical Review, 1924, 24(5): 575-587. |
| [46] | Li Q, Xuan Y M, Wang J. Experimental investigations on transport properties of magnetic fluids[J]. Experimental Thermal and Fluid Science, 2005, 30(2): 109-116. |
| [1] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [2] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [3] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [4] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [5] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [6] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [7] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [8] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [9] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [10] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [11] | Yifei WANG, Yuxing LI, Xin OUYANG, Xuefeng ZHAO, Lan MENG, Qihui HU, Buze YIN, Yaqi GUO. Numerical calculation of CO2 pipeline fracture propagation based on crack tip decompression characteristics [J]. CIESC Journal, 2025, 76(9): 4683-4693. |
| [12] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [13] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| [14] | Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels [J]. CIESC Journal, 2025, 76(9): 4578-4585. |
| [15] | Kaiyuan YANG, Xizhong CHEN. Comparison of discrete element method and finite-discrete element method for simulation of agglomerate breakage [J]. CIESC Journal, 2025, 76(9): 4398-4411. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||