CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6289-6301.DOI: 10.11949/0438-1157.20250557
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zihuan MA(
), Xiaoping YANG, Nanjing HAO, Jinjia WEI(
)
Received:2025-05-21
Revised:2025-08-02
Online:2026-01-23
Published:2025-12-31
Contact:
Jinjia WEI
通讯作者:
魏进家
作者简介:马紫欢(1997—),女,博士研究生,mazihuan89@163.com
基金资助:CLC Number:
Zihuan MA, Xiaoping YANG, Nanjing HAO, Jinjia WEI. Simulation study of subcooled flow boiling in wedge-shaped manifold microchannels[J]. CIESC Journal, 2025, 76(12): 6289-6301.
马紫欢, 杨小平, 郝南京, 魏进家. 楔形歧管微通道内的过冷流动沸腾模拟研究[J]. 化工学报, 2025, 76(12): 6289-6301.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 (a) Schematic diagram of MMC heat sink; (b) Calculation region of Z-shaped MMC with boundary conditions; (c) Top view of Z-shaped MMC; (d) Top view of Taper-200-50
| MMC配置 | 参数 | 值/μm | MMC配置 | 参数 | 值/μm |
|---|---|---|---|---|---|
| Z形MMC | Lin1, Lout2 | 100 | Taper-200-50 | Lin1, Lout2 | 200 |
| Lin2, Lout1 | 100 | Lin2, Lout1 | 50 | ||
| Lm | 100 | Lm | 50 | ||
| Taper-150-75 | Lin1, Lout2 | 150 | Taper-250-25 | Lin1, Lout2 | 250 |
| Lin2, Lout1 | 75 | Lin2, Lout1 | 25 | ||
| Lm | 75 | Lm | 25 |
Table 1 Geometrical parameters and dimensions of the MMC heat sink
| MMC配置 | 参数 | 值/μm | MMC配置 | 参数 | 值/μm |
|---|---|---|---|---|---|
| Z形MMC | Lin1, Lout2 | 100 | Taper-200-50 | Lin1, Lout2 | 200 |
| Lin2, Lout1 | 100 | Lin2, Lout1 | 50 | ||
| Lm | 100 | Lm | 50 | ||
| Taper-150-75 | Lin1, Lout2 | 150 | Taper-250-25 | Lin1, Lout2 | 250 |
| Lin2, Lout1 | 75 | Lin2, Lout1 | 25 | ||
| Lm | 75 | Lm | 25 |
| 参数 | 液相HFE7100 | 气相HFE7100 | Si |
|---|---|---|---|
| 密度ρ/(kg/m3) | 1402 | 11.5 | 2300 |
| 比热容cp /(J/(kg·K)) | 1263 | 870 | 700 |
| 热导率k/(W/(m·K)) | 0.058 | 0.01 | 150 |
| 黏度μ/(Pa·s) | 0.0004 | 1.32×10-5 | — |
| 汽化热hlv/(kJ/kg) | 111.6 | — | — |
| 表面张力σ/(N/m) | 0.00943 | — | — |
| 饱和温度Tsat/K | 339 | — | — |
Table 2 Thermophysical properties of HFE7100 and silicon
| 参数 | 液相HFE7100 | 气相HFE7100 | Si |
|---|---|---|---|
| 密度ρ/(kg/m3) | 1402 | 11.5 | 2300 |
| 比热容cp /(J/(kg·K)) | 1263 | 870 | 700 |
| 热导率k/(W/(m·K)) | 0.058 | 0.01 | 150 |
| 黏度μ/(Pa·s) | 0.0004 | 1.32×10-5 | — |
| 汽化热hlv/(kJ/kg) | 111.6 | — | — |
| 表面张力σ/(N/m) | 0.00943 | — | — |
| 饱和温度Tsat/K | 339 | — | — |
Fig.3 (a) Mass flux distribution in microchannel of the four MMCs under constant heat flux; (b) Standard deviation of mass flux distribution in microchannel at 12 operating conditions; (c) Mass flux distribution in microchannel of Taper-200-50 under different heat fluxes
Fig.4 (a) Total pressure drop within the quasi-steady-state period and (b) standard deviation of pressure drop fluctuations under various operating conditions
Fig.6 (a) Pressure drop distribution in microchannel under constant heat flux for different MMC configurations, and (b) standard deviation of pressure drop distribution in microchannel under various operating conditions
Fig.11 (a) The variation of the total vapor volume fraction in Taper-200-50 with time, and (b) the average value of total vapor volume fraction for quasi-steady-state period at different heat fluxes
| [1] | van Erp R, Soleimanzadeh R, Nela L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585(7824): 211-216. |
| [2] | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
| [3] | Yan X, Wu Y, Zhang Z T, et al. Experimental study of flow boiling heat transfer in rectangular ribbed micro-channels with rectangular cavities[J]. International Journal of Heat and Mass Transfer, 2025, 236: 126402. |
| [4] | Raj S, Pathak M, Khan M K. Flow boiling characteristics in different configurations of stepped microchannels[J]. Experimental Thermal and Fluid Science, 2020, 119: 110217. |
| [5] | Hu C Y, Ma Z H, Zhang Y T, et al. Optimizing the performance of microchannel heat sinks: effects of trapezoidal cover plate on flow boiling heat transfer and stability[J]. International Journal of Heat and Mass Transfer, 2025, 244: 126942. |
| [6] | Yin L F, Yang Z L, Zhang K X, et al. Flow boiling heat transfer in multi-stage enhanced open microchannels with micro/nano structures[J]. Applied Thermal Engineering, 2025, 258: 124695. |
| [7] | Yuan B, Zhang Y H, Zhou J, et al. Critical heat flux prediction model for flow boiling on micro-pin-finned surfaces[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119693. |
| [8] | Camarasa J, Crespo A, Vilarrubí M, et al. A review of experimental studies on flow boiling instabilities mitigation through geometrical modifications[J]. International Journal of Heat and Mass Transfer, 2024, 235: 126014. |
| [9] | Yu X J, Xu J L, Liu G H, et al. Phase separation evaporator using pin-fin-porous wall microchannels: comprehensive upgrading of thermal-hydraulic operating performance[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120460. |
| [10] | Li W M, Luo K, Li C, et al. A remarkable CHF of 345 W/cm2 is achieved in a wicked-microchannel using HFE-7100[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122527. |
| [11] | Wang S, Chen H H, Chen C L. Enhanced flow boiling in silicon nanowire-coated manifold microchannels[J]. Applied Thermal Engineering, 2019, 148: 1043-1057. |
| [12] | Chang W, Luo K, Li W M, et al. Enhanced flow boiling of HFE-7100 in silicon microchannels with nanowires coated micro-pinfins[J]. Applied Thermal Engineering, 2022, 216: 119064. |
| [13] | He Z Q, Yan Y F, Zhang Z E. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review[J]. Energy, 2021, 216: 119223. |
| [14] | Harpole G M, Eninger J E. Micro-channel heat exchanger optimization[C]//Proceeding of Seventh IEEE Semiconductor Thermal Measurement and Management Symposium. IEEE, 1991: 59-63. |
| [15] | 刘帆, 张芫通, 陶成, 等. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
| Liu F, Zhang Y T, Tao C, et al. Performance of manifold microchannel liquid cooling[J]. CIESC Journal, 2024, 75(5): 1777-1786. | |
| [16] | Zhang Y T, Yang X P, Ji X Y, et al. Numerical and experimental study on manifold-distributed jet microchannel with micro-pin-fins[J]. Applied Thermal Engineering, 2025, 258: 124675. |
| [17] | Drummond K P, Back D, Sinanis M D, et al. Characterization of hierarchical manifold microchannel heat sink arrays under simultaneous background and hotspot heating conditions[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1289-1301. |
| [18] | Drummond K P, Back D, Sinanis M D, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics[J]. International Journal of Heat and Mass Transfer, 2018, 117: 319-330. |
| [19] | Luo Y, Zhang J Z, Li W. A comparative numerical study on two-phase boiling fluid flow and heat transfer in the microchannel heat sink with different manifold arrangements[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119864. |
| [20] | Lin Y H, Luo Y, Li W, et al. Single-phase and two-phase flow and heat transfer in microchannel heat sink with various manifold arrangements[J]. International Journal of Heat and Mass Transfer, 2021, 171: 121118. |
| [21] | Ma Z H, Zhang Y T, Hu C Y, et al. Simulation of single-phase and subcooled flow boiling in manifold microchannel heat sinks with micro-pin-fin wall[J]. Applied Thermal Engineering, 2025, 271: 126297. |
| [22] | Chen C W, Wang X Y, Yuan B Q, et al. Investigation of flow and heat transfer performance of the manifold microchannel with different manifold arrangements[J]. Case Studies in Thermal Engineering, 2022, 34: 102073. |
| [23] | Tang W Y, Li J Y, Wu Z, et al. A numerical investigation of the thermal-hydraulic performance during subcooled flow boiling in MMCs with different manifolds[J]. Applied Thermal Engineering, 2024, 236: 121820. |
| [24] | 冀昕宇, 张芫通, 杨小平, 等. 楔形歧管微通道流动与沸腾换热[J]. 化工学报, 2024, 75(11): 4196-4204. |
| Ji X Y, Zhang Y T, Yang X P, et al. Flow and boiling heat transfer in wedge-shaped manifold microchannel[J]. CIESC Journal, 2024, 75(11): 4196-4204. | |
| [25] | Ji X Y, Zhang Y T, Yang X P, et al. Efficient flow boiling in wedge-shaped manifold microchannels for high heat flux chips cooling[J]. International Communications in Heat and Mass Transfer, 2025, 164: 108964. |
| [26] | Duryodhan V S, Singh S G, Agrawal A. Liquid flow through converging microchannels and a comparison with diverging microchannels[J]. Journal of Micromechanics and Microengineering, 2014, 24(12): 125002. |
| [27] | Albadawi A, Donoghue D B, Robinson A J, et al. Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment[J]. International Journal of Multiphase Flow, 2013, 53: 11-28. |
| [28] | Lee W H. A pressure iteration scheme for two-phase flow modeling[J]. Multiphase Transport Fundamentals, Reactor Safety, Applications, 1980, 1: 407-431. |
| [29] | Leong K C, Ho J Y, Wong K K. A critical review of pool and flow boiling heat transfer of dielectric fluids on enhanced surfaces[J]. Applied Thermal Engineering, 2017, 112: 999-1019. |
| [30] | Bai J J, Sun Y L, Huang H Z, et al. An open superhydrophilic microchannel heat sink for thin film boiling with a high coefficient of performance[J]. Renewable and Sustainable Energy Reviews, 2023, 186: 113684. |
| [31] | Boteler L, Jankowski N, McCluskey P, et al. Numerical investigation and sensitivity analysis of manifold microchannel coolers[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7698-7708. |
| [32] | Tang W, Sun L C, Liu H T, et al. Improvement of flow distribution and heat transfer performance of a self-similarity heat sink with a modification to its structure[J]. Applied Thermal Engineering, 2017, 121: 163-171. |
| [1] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [2] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [3] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [4] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [5] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [6] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [7] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [8] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [9] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [10] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [11] | Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels [J]. CIESC Journal, 2025, 76(9): 4578-4585. |
| [12] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [13] | Wenlong LI, Cheng CHANG, Xiaolin WU, Zhongli JI. Research on liquid distribution characteristics and pressure drop evolution in oil-water coalescing filters [J]. CIESC Journal, 2025, 76(9): 4850-4861. |
| [14] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| [15] | Kaiyuan YANG, Xizhong CHEN. Comparison of discrete element method and finite-discrete element method for simulation of agglomerate breakage [J]. CIESC Journal, 2025, 76(9): 4398-4411. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||