CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6410-6422.DOI: 10.11949/0438-1157.20250318
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Dan LI1(
), Xiuheng YU1, Juhui CHEN1, Tong SU1, Michael ZHURAVKOV2,3, Siarhel LAPATSIN2,3, Wenrui JIANG3
Received:2025-03-28
Revised:2025-09-28
Online:2026-01-23
Published:2025-12-31
Contact:
Dan LI
李丹1(
), 于秀恒1, 陈巨辉1, 苏潼1, ZHURAVKOV Michael2,3, LAPATSIN Siarhel2,3, 姜文锐3
通讯作者:
李丹
作者简介:李丹(1987—),男,博士,副教授,b0222li@126.com
基金资助:CLC Number:
Dan LI, Xiuheng YU, Juhui CHEN, Tong SU, Michael ZHURAVKOV, Siarhel LAPATSIN, Wenrui JIANG. Research on optimization model of gangue combustion based on chemical reaction kinetics[J]. CIESC Journal, 2025, 76(12): 6410-6422.
李丹, 于秀恒, 陈巨辉, 苏潼, ZHURAVKOV Michael, LAPATSIN Siarhel, 姜文锐. 基于化学反应动力学煤矸石燃烧优化模型研究[J]. 化工学报, 2025, 76(12): 6410-6422.
Add to citation manager EndNote|Ris|BibTeX
| 温度/K | 活化能/(kJ/mol) | ||||
|---|---|---|---|---|---|
| PE1 | PE2 | PE3 | PE4 | PE5 | |
| 800 | 70.94 | 71.02 | 71.87 | 72.64 | 73.20 |
| 900 | 78.98 | 79.10 | 79.85 | 80.62 | 81.23 |
| 1000 | 87.52 | 87.63 | 88.20 | 88.90 | 89.30 |
| 1100 | 96.30 | 97.01 | 97.96 | 98.60 | 99.10 |
| 1200 | 107.20 | 107.90 | 108.52 | 109.1 | 109.96 |
| 1300 | 115.52 | 116.10 | 117.22 | 118.13 | 119.20 |
Table 1 Activation energy of coal gangue pyrolysis under different temperature gradients
| 温度/K | 活化能/(kJ/mol) | ||||
|---|---|---|---|---|---|
| PE1 | PE2 | PE3 | PE4 | PE5 | |
| 800 | 70.94 | 71.02 | 71.87 | 72.64 | 73.20 |
| 900 | 78.98 | 79.10 | 79.85 | 80.62 | 81.23 |
| 1000 | 87.52 | 87.63 | 88.20 | 88.90 | 89.30 |
| 1100 | 96.30 | 97.01 | 97.96 | 98.60 | 99.10 |
| 1200 | 107.20 | 107.90 | 108.52 | 109.1 | 109.96 |
| 1300 | 115.52 | 116.10 | 117.22 | 118.13 | 119.20 |
| 温度/K | 频率因子/s-1 | ||||
|---|---|---|---|---|---|
| PA1 | PA2 | PA3 | PA4 | PA5 | |
| 800 | 1.00×107 | 1.00×107 | 7.13×107 | 7.93×107 | 8.30×107 |
| 900 | 1.00×107 | 1.07×107 | 8.01×107 | 8.57×107 | 9.12×108 |
| 1000 | 1.01×107 | 1.11×107 | 2.65×107 | 1.23×108 | 9.85×108 |
| 1100 | 1.15×107 | 3.74×107 | 6.26×107 | 1.96×108 | 7.32×109 |
| 1200 | 2.85×107 | 9.85×107 | 1.63×108 | 7.41×108 | 8.02×109 |
| 1300 | 9.65×107 | 1.45×108 | 7.62×109 | 2.03×1010 | 9.02×1010 |
Table 2 Frequency factors of coal gangue pyrolysis under different temperature gradients
| 温度/K | 频率因子/s-1 | ||||
|---|---|---|---|---|---|
| PA1 | PA2 | PA3 | PA4 | PA5 | |
| 800 | 1.00×107 | 1.00×107 | 7.13×107 | 7.93×107 | 8.30×107 |
| 900 | 1.00×107 | 1.07×107 | 8.01×107 | 8.57×107 | 9.12×108 |
| 1000 | 1.01×107 | 1.11×107 | 2.65×107 | 1.23×108 | 9.85×108 |
| 1100 | 1.15×107 | 3.74×107 | 6.26×107 | 1.96×108 | 7.32×109 |
| 1200 | 2.85×107 | 9.85×107 | 1.63×108 | 7.41×108 | 8.02×109 |
| 1300 | 9.65×107 | 1.45×108 | 7.62×109 | 2.03×1010 | 9.02×1010 |
| 温度/K | 活化能/(kJ/mol) | ||||
|---|---|---|---|---|---|
| CE1 | CE2 | CE3 | CE4 | CE54 | |
| 800 | 83.83 | 84.62 | 85.20 | 85.91 | 86.62 |
| 900 | 84.41 | 86.32 | 85.67 | 86.25 | 87.83 |
| 1000 | 85.00 | 85.70 | 86.80 | 87.30 | 88.90 |
| 1100 | 85.63 | 86.53 | 87.20 | 88.10 | 89.23 |
| 1200 | 86.52 | 87.63 | 87.21 | 87.95 | 89.65 |
| 1300 | 86.85 | 87.36 | 88.52 | 89.62 | 90.32 |
Table 3 Activation energy of coal gangue coke reaction under different temperature gradients
| 温度/K | 活化能/(kJ/mol) | ||||
|---|---|---|---|---|---|
| CE1 | CE2 | CE3 | CE4 | CE54 | |
| 800 | 83.83 | 84.62 | 85.20 | 85.91 | 86.62 |
| 900 | 84.41 | 86.32 | 85.67 | 86.25 | 87.83 |
| 1000 | 85.00 | 85.70 | 86.80 | 87.30 | 88.90 |
| 1100 | 85.63 | 86.53 | 87.20 | 88.10 | 89.23 |
| 1200 | 86.52 | 87.63 | 87.21 | 87.95 | 89.65 |
| 1300 | 86.85 | 87.36 | 88.52 | 89.62 | 90.32 |
| 温度/K | 频率因子/s-1 | ||||
|---|---|---|---|---|---|
| CA1 | CA2 | CA3 | CA4 | CA5 | |
| 800 | — | 6.10×106 | 6.52×106 | 6.98×106 | 7.32×107 |
| 900 | 6.19×106 | 6.62×106 | 7.02×107 | 7.42×107 | 7.95×107 |
| 1000 | 6.59×106 | 7.00×107 | 7.53×107 | 8.01×108 | 8.54×108 |
| 1100 | 7.13×107 | 7.62×107 | 8.06×108 | 8.63×108 | 9.12×109 |
| 1200 | 8.00×109 | 8.51×109 | 8.95×109 | 9.42×109 | 9.95×109 |
| 1300 | 8.52×109 | 8.95×109 | 9.51×109 | 6.55×109 | 1.35×1010 |
Table 4 Frequency factor during gangue coke reaction at different temperatures
| 温度/K | 频率因子/s-1 | ||||
|---|---|---|---|---|---|
| CA1 | CA2 | CA3 | CA4 | CA5 | |
| 800 | — | 6.10×106 | 6.52×106 | 6.98×106 | 7.32×107 |
| 900 | 6.19×106 | 6.62×106 | 7.02×107 | 7.42×107 | 7.95×107 |
| 1000 | 6.59×106 | 7.00×107 | 7.53×107 | 8.01×108 | 8.54×108 |
| 1100 | 7.13×107 | 7.62×107 | 8.06×108 | 8.63×108 | 9.12×109 |
| 1200 | 8.00×109 | 8.51×109 | 8.95×109 | 9.42×109 | 9.95×109 |
| 1300 | 8.52×109 | 8.95×109 | 9.51×109 | 6.55×109 | 1.35×1010 |
| [1] | 郭彦霞, 张圆圆, 程芳琴. 煤矸石综合利用的产业化及其展望[J]. 化工学报, 2014, 65(7): 2443-2453. |
| Guo Y X, Zhang Y Y, Cheng F Q. Industrial development and prospect about comprehensive utilization of coal gangue[J]. CIESC Journal, 2014, 65(7): 2443-2453. | |
| [2] | Varol M, Symonds R, Anthony E J, et al. Emissions from co-firing lignite and biomass in an oxy-fired CFBC[J]. Fuel Processing Technology, 2018, 173: 126-133. |
| [3] | 廖新杰. 煤泥流化床混烧机理及氮硫污染物排放特性研究[D]. 武汉: 华中科技大学, 2024. |
| Liao X J. Study on the mechanism of coal slurry fluidized bed co firing and the emission characteristics of nitrogen and sulfur pollutants[D]. Wuhan: Huazhong University of Science and Technology, 2024. | |
| [4] | 黄顺进, 张丽, 颜井冲, 等. 高碱煤与煤矸石掺烧SO2和NO减排及结渣抑制研究[J]. 化工学报, 2022, 73(12): 5581-5591. |
| Huang S J, Zhang L, Yan J C, et al. Investigation on cofiring high-alkali coal with coal gangues: SO2, NO reduction and ash slagging inhibition[J]. CIESC Journal, 2022, 73(12): 5581-5591. | |
| [5] | Chen Y R, Li H J, Yang Z Q, et al. Co-utilization of two coal mine residues: non-catalytic co-combustion of coal bed methane and coal gangue in a circulating fluidized bed[J]. Advances in Mechanical Engineering, 2015, 7(9): 1687814015606380. |
| [6] | Wang S J, Lu J D, Li W J, et al. Modeling of pulverized coal combustion in cement rotary kiln[J]. Energy & Fuels, 2006, 20(6): 2350-2356. |
| [7] | 周英贵. 大型电站锅炉SNCR/SCR脱硝工艺试验研究、数值模拟及工程验证[D]. 南京: 东南大学, 2016. |
| Zhou Y G. Hybrid SNCR/SCR denitration technology in large thermal power plant boiler: experimental study, numerical simulation and egneering validation[D]. Nanjing: Southeast University, 2016. | |
| [8] | Zhang J W, Zhang Y, He G, et al. Wind speed effect on infrared-image-based coal and gangue recognition with liquid intervention in LTCC[J]. Journal of Cleaner Production, 2024, 478: 143925. |
| [9] | Wang H P, Jin H Z, Yang Z, et al. CFD modeling of flow, combustion and NO x emission in a wall-fired boiler at different low-load operating conditions[J]. Applied Thermal Engineering, 2024, 236: 121824. |
| [10] | Singh R I, Brink A, Hupa M. CFD modeling to study fluidized bed combustion and gasification[J]. Applied Thermal Engineering, 2013, 52(2): 585-614. |
| [11] | 赵立正. 煤矸混烧超临界CFB锅炉气固流动及污染物生成特性研究[D]. 北京: 华北电力大学, 2020. |
| Zhao L Z. Research on gas-solid flow and pollutants generation characteristics of a coal-gangue-fired supercritical CFB boiler[D]. Beijing: North China Electric Power University, 2020. | |
| [12] | Chejne F, Hernandez J P. Modelling and simulation of coal gasification process in fluidised bed[J]. Fuel, 2002, 81(13): 1687-1702. |
| [13] | 李林, 段伦博, 武万强, 等. 煤颗粒流化床增压富氧燃烧脱挥发分模型[J]. 煤炭学报, 2022, 47(11): 3906-3913. |
| Li L, Duan L B, Wu W Q, et al. Model on devolatilization of coal particle in fluidized bed under pressurized oxy-fuel combustion[J]. Journal of China Coal Society, 2022, 47(11): 3906-3913. | |
| [14] | 马芯蕊. 高密度循环流化床煤气化过程数值模拟[D]. 北京: 华北电力大学, 2023. |
| Ma X R. Numerical simulation of high-density circulating fluidized bed gasification process [D]. Beijing: North China Electric Power University, 2023. | |
| [15] | 景旭亮, 王志青, 张乾, 等. 流化床气化炉半焦细粉的燃烧特性及其动力学研究[J]. 燃料化学学报, 2014, 42(1): 13-19. |
| Jing X L, Wang Z Q, Zhang Q, et al. Combustion property and kinetics of fine chars derived from fluidized bed gasifier[J]. Journal of Fuel Chemistry and Technology, 2014, 42(1): 13-19. | |
| [16] | Matthews L R, Niziolek A M, Onel O, et al. Biomass to liquid transportation fuels via biological and thermochemical conversion: process synthesis and global optimization strategies[J]. Industrial & Engineering Chemistry Research, 2016, 55(12): 3203-3225. |
| [17] | Wen C M, Foster C, van Winden W, et al. Toward net-zero greenhouse gas emission: techno–economic and life cycle analyses of routes for triacetic acid lactone (TAL) bioproduction[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(33): 12430-12445. |
| [18] | 郭啸峰. 基于详细化学反应简化机理的燃烧污染物生成数值模拟与实验验证[D]. 北京. 中国科学院力学研究所, 2014. |
| Guo X F. Numerical simulation of combustion pollutant formation based on reduced mechanism of detailed chemical reactions and experimental validation[D]. Beijing: Institute of Mechanics, Chinese Academy of Sciences, 2014. | |
| [19] | 李振山, 陈登高, 张志, 等. 煤粉燃烧中NO x 的预测: 参数数据库及CFD实践[J]. 煤炭学报, 2016, 41(12): 3142-3150. |
| Li Z S, Chen D G, Zhang Z, et al. Prediction of NO x during pulverized coal combustion: parameter database and CFD application[J]. Journal of China Coal Society, 2016, 41(12): 3142-3150. | |
| [20] | 贺坤, 王刚, 邹忠平, 等. 富氢低碳高炉炉内动力学模型及其应用[C]//第十二届中国金属学会青年学术年会. 赣州, 2024: 111-119. |
| He K, Wang G, Zhou Z P . et al . Dynamic model and application of rich hydrogen low carbon blast furnace [C]// The 12th Youth Academic Conference of the Chinese Society of Metals. Ganzhou, 2024: 111-119 | |
| [21] | 王敬. 乙酸苯酚酯热解的实验与动力学模型研究[D]. 南宁: 广西大学, 2023: 25-54. |
| Wang J. Experimental and kinetic model study on pyrolysis of phenol acetate [D]. Nanning: Guangxi University, 2023: 25-54. | |
| [22] | 周俊杰, 徐国权, 张华俊. FLUENT工程技术与实例分析[M]. 北京: 中国水利水电出版社, 2010. |
| Zhou J J, Xu G Q, Zhang H J. FLUENT Engineering Technology and Case Analysis[M]. Beijing: China Water & Power Press, 2010. | |
| [23] | 李进良, 李承曦, 胡仁喜, 等. 精通FLUENT6.3流场分析[M]. 北京: 化学工业出版社, 2009. |
| Li J L, Li C X, Hu R X. Proficient in FLUENT6.3 Flow Field Analysis[M]. Beijing: Chemical Industry Press, 2009. | |
| [24] | 唐家鹏. ANSYS FLUENT 16.0超级学习手册[M]. 北京: 人民邮电出版社, 2016. |
| Tang J P. ANSYS FLUENT 16.0 Super Learning Manual[M]. Beijing: Posts & Telecom Press, 2016. | |
| [25] | 毛晓飞, 陈念祖. 煤燃烧反应活化能计算方法的研究[J]. 电站系统工程, 2007, 23(3): 15-17. |
| Mao X F, Chen N Z. Improving the Flynn-Wall-Ozawa method in calculating the activation energy in combustion reactions of the coal[J]. Power System Engineering, 2007, 23(3): 15-17. | |
| [26] | 罗勇军, 李建波, 郭子鹏. 基于热重分析的低热值煤/生物质耦合燃烧动力学特性研究[J]. 煤炭技术, 2025, 44(2): 228-233. |
| Luo Y J, Li J B, Guo Z P. Study on kinetic characteristics of low heat value coal and biomass co-combustion based on thermogravimetric analysis[J]. Coal Technology, 2025, 44(2): 228-233. | |
| [27] | Namkung H, Lee Y J, Park J H, et al. Blending effect of sewage sludge and woody biomass into coal on combustion and ash agglomeration behavior[J]. Fuel, 2018, 225: 266-276. |
| [28] | Wang Y L, Jia L, Guo J R, et al. Thermogravimetric analysis of co-combustion between municipal sewage sludge and coal slime: combustion characteristics, interaction and kinetics[J]. Thermochimica Acta, 2021, 706: 179056. |
| [29] | 曹妙妙, 张冬朋, 刘飞. 煤矸石的热重分析: 以淮北某煤矿为例[J]. 科技风, 2024(2): 160-163. |
| Cao M M, Zhang D P, Liu F. Thermogravimetric analysis of coal gangue: taking a coal mine in Huaibei as an example[J]. Technology Wind, 2024(2): 160-163. | |
| [30] | 刘成龙. 含油污泥与煤矸石共热解特性研究与机理分析[D]. 北京: 北京化工大学, 2024. |
| Liu C L. Co-pyrolysis characteristics and mechanism analysis of oily sludge with coal gangue [D]. Beijing: Beijing University of Chemical Technology, 2024. | |
| [31] | Narula S C, Wellington J F. Prediction, linear regression and the minimum sum of relative errors[J]. Technometrics, 1977, 19(2): 185. |
| [32] | Dong Z H, Dong C Q, Zhang J J, et al. Modeling the combustion of coal in a 300MW circulating fluidized bed boiler with aspen plus[C]//2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu: IEEE, 2010: 1-4. |
| [1] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [2] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [3] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [4] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [5] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [6] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [7] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [8] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [9] | Kaiyuan YANG, Xizhong CHEN. Comparison of discrete element method and finite-discrete element method for simulation of agglomerate breakage [J]. CIESC Journal, 2025, 76(9): 4398-4411. |
| [10] | Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations [J]. CIESC Journal, 2025, 76(9): 4694-4708. |
| [11] | Zhengzong HUANG, Kecheng LIU, Zefang LI, Pingsheng ZENG, YongFu LIU, Hongjie YAN, Liu LIU. Numerical simulation and field synergy optimization of brick-built heat exchange chamber in zinc refining furnace [J]. CIESC Journal, 2025, 76(9): 4425-4439. |
| [12] | Yifei WANG, Yuxing LI, Xin OUYANG, Xuefeng ZHAO, Lan MENG, Qihui HU, Buze YIN, Yaqi GUO. Numerical calculation of CO2 pipeline fracture propagation based on crack tip decompression characteristics [J]. CIESC Journal, 2025, 76(9): 4683-4693. |
| [13] | Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels [J]. CIESC Journal, 2025, 76(9): 4578-4585. |
| [14] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [15] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||